With the advent of the 4.0 era of logistics due to the Fourth Industrial Revolution, infrastructures have been built to receive the same services online and offline. Logistics services affected by logistics 4.0 and IT technology are rapidly changing. Logistics services are developing using technologies such as big data, artificial intelligence, blockchain, Internet of things, and augmented reality. The convergence of logistics services and various IT new technologies is accelerating, and the development of data management solution technology has led to the emergence of electronic cargo waybill to replace paper cargo waybill. The electronic waybill was developed to supplement paper waybill that lack economical and safety. However, the electronic waybill that appeared to complement the paper waybill are also in need of complementation in terms of efficiency and reliability. New research is needed to ensure that electronic cargo waybill gain the trust of users and are actively utilized. To solve this problem, electronic cargo waybill that combine blockchain technology are being developed. This study aims to improve the reliability, operational efficiency and safety of blockchain electronic cargo waybill. The purpose of this study is to analyze the blockchain-based electronic cargo waybill system and to derive evaluation indicators for system supplementation.
Recently, the breakdown of online banking servers and the leakage of customer information give rise to much concern about the security of information systems in financial and banking companies in Korea. The enforcement of security for information system becomes much more important issue than earlier. However, the security reinforcement of information system is restricted by a budget. In addition, the activities' cost to secure information system from threatening are under uncertain circumstances and should be established by a human decision maker who is basically uncertain and vague. Thus, making the budget for information system is exposed to any extent of the risk for these reasons. First, we introduce brief fuzzy set theory and fuzzy AHP (Analytic Hierarchy Process) methodology. Then, the cost elements that comprise yearly budget are presented and the priorities among the cost elements are calculated by fuzzy AHP. The cost elements that are exposed to risk are evaluated from the both perspectives of the risk impact and risk occurrence possibility which are expressed as linguistic terms. To get information on the risk profiles-pessimistic, most likely, and optimistic-for each cost element, the evaluation is accomplished and the result is presented. At last, the budget ranges-minimum, mode, maximum-for each cost element are estimated with the consideration of the risk profiles.
To give a solution to solve personal information problems issued in this study, the domestic and overseas cases about information security management system including an authentication technique are analyzed. To preserve the outflow of personal information, which is such a major issue all over the world, a new security audit check list is also proposed. We hope this study to help information system developers construct and operate confidential information systems through the three steps: Analysis of risk factors that expose personal information, Proposal to solve the problem, Verification of audit checking items.