Roller Compacted Concrete Pavement (RCCP) is placed by roller compaction of a mixture of less cement and unit water content and more aggregates and provides excellent early strength development with the help of interlocking of aggregates and hydration. The unit cement content of RCC pavements accounts for 85% of conventional pavements, with low drying shrinkage. As low drying shrinkage leads to smaller crack widths than ordinary concrete, RCC pavements can help elevate reflecting crack resistance if applied to a base layer of a composite pavement system. In a composite pavement with an asphalt surface laid over a concrete base, pavement temperature change is important in predicting pavement performance. As movement of the lower concrete layer is determined by temperature depending on pavement depth, temperature data of the pavement structure serves as an important parameter to prevent and control reflecting crack. Among the causes of reflecting crack, horizontal behavior of the lower concrete layer and curling-caused vertical behavior of joints/cracks are considered closely related to temperature change characteristics of the lower concrete course (Baek, 2010). Previous studies at home and abroad about reflecting crack have focused on pavement behavior depending on daily and yearly in-service temperature changes of a composite pavement (Manuel, 2005). Until now, however, studies have not been conducted on initial temperature characteristics of concrete in composite pavements where asphalt surface is placed over an RCC base. Annual temperature changes of in-service concrete pavements go up to 60 ℃, and those of asphalt overlays become around the twice at 110 ℃. This study evaluated initial crack behavior of composite pavement by investigating pavement temperature by depth of an RCC base and analyzing joint movement depending on change to temperatures of continuously jointed pavements. Findings from the study suggest that in composite pavements and asphalt overlays, time of laying asphalt has an important impact on crack behavior and reflecting crack.
본 연구에서는 초기 균열을 도입한 철근콘크리트 부재에 대한 침지 염화물 침투 실험을 수행하였다. 염화물 확산 특성과 임계 균열폭을 비교하였으며, 콘크리트 자기복원 특성을 검토하였다. 실험결과에 따르면, 표면 균열폭이 증가할수록 염화물 침투저항성이 크게 감소하였으며, 광물질 혼화재를 사용할 경우, 비균열 부재의 염화물 침투저항성은 크게 개선되었지만, 고로슬래그 및 플라이애쉬 혼화재를 사용할 경우에 균열이 발생하게 되면 도리어 염화물 침투저항성은 보통 콘크리트에 비해 크게 저하하였다. 임계 균열폭은 침지 염화물 침투 실험 결과 평균 29㎛으로 측정되었다. 자기복원 현상에 의해 4∼15㎛범위의 균열이 복원되었다. 그러나 콘크리트 자기복원 현상에 의해 시각적으로 복원된 부분의 염화물 침투 저항성은 완전히 회복되지 않았다.