For a plastic diffusion lens to uniformly diffuse light, it is important to minimize deformation that may occur during injection molding and to minimize deformation. It is essential to control the injection molding condition precisely. In addition, as the number of meshes increases, there is a limitation in that the time required for analysis increases. Therefore, We applied machine learning algorithms for faster and more precise control of molding conditions. This study attempts to predict the deformation of a plastic diffusion lens using the Decision Tree regression algorithm. As the variables of injection molding, melt temperature, packing pressure, packing time, and ram speed were set as variables, and the dependent variable was set as the deformation value. A total of 256 injection molding analyses were conducted. We evaluated the prediction model's performance after learning the Decision Tree regression model based on the result data of 256 injection molding analyses. In addition, We confirmed the prediction model's reliability by comparing the injection molding analysis results.
This paper analyzed the correlation between injection molding factors through correlation analysis. In addition, the decision-tree model, which is a white box model with excellent explanatory power, was used to obtain optimal molding conditions that satisfy multiple constraint conditions. First, 243 data to be used in the experiment were created through a full factorial design. Second, a correlation analysis was conducted to understand the correlation. Third, to verify the decision-tree model, the prediction performance was evaluated using RMSE. As a result, good prediction performance was confirmed. A decision-tree experiment analysis was conducted. As a result of the progress, the same results as the correlation analysis were derived. Based on the previous analysis results, optimal molding conditions were applied to CAE. As a result, the amount of deformation in the multi-cavity could be improved by about 1.1% and 2.72% while satisfying the constraint.