검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        세계적으로 친환경 해충 방제를 위해 식물 추출물을 사용하는 연구가 화학농약에 대한 의존도를 줄이기 위해 진행되고 있다. 제충국 식물은 살충제용 피레트린의 원료로 널리 알려져 있지만, 한국에서 재배된 식물의 추출물과 효능에 대한 연구는 제한적이다. 본 연구는 한국에서 재배된 본 연구는 한국에서 재배된 두 가지 제충국 품종에서 피레트린을 추출하는 방법을 비교하였다. 또한, 분리된 피레트린 함유 추출물의 주요 식물 해충 에 대한 효능을 조사하였다. 피레트린 함량은 프랑스에서 수입한 '계통' 품종에 비해 '달마시안' 품종에서 통계적으로 유의하게 높았다. 따라서, 달마 시안 품종의 피레트린 추출물을 이용하여 본 연구에 사용하였다. 추출된 피레트린의 양은 추출에 사용된 에탄올 농도가 증가함에 따라 증가하였으 며, 95% 에탄올을 사용했을 때 가장 높은 수준(6,064 ppm/100 g 꽃 건물중)이었다. 총 피레트린 함량과 피레트린 I/II 비율은 만개기에 수확한 꽃 에서 가장 높았다. 추출물의 in vitro 생물검정에서 복숭아혹진딧물의 LC50 값은 34 ppm, 배추좀나방 유충은 69 ppm, 뿌리혹선충 유충은 0.1 ppm이었다. 이러한 결과는 한국에서 재배된 달마시안 꽃의 에탄올 추출물이 식물 해충 방제를 위한 천연 살충제 개발에 유용할 수 있음을 나타냈 다. 본 연구는 한국에서 재배된 T. cinerariifolium var. 달마시안 꽃 추출물이 국내에서 식물 해충을 효과적이고 친환경적으로 방제하는 데 잠재력이 있음을 보였다.
        4,200원
        6.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        바퀴는 혐오감을 줄 뿐만 아니라 여러 종류의 병원체를 기계적으로 전파하는 주요한 위생곤충이며, 바퀴 방제를 위해 독먹이제를 가장 많이 사용한다. 본 연구에서는 4종류(chlorpyrifos, avermectin, hydramethylnon 및 fipronil)의 살충 주성분이 각각 함유된 국내 유통 독먹이제 3종 (Korea Combat Ultra Slim (K-CUS), Korea Combat Power (K-CP) 및 Korea Zaps Dual Bait (K-ZDB))과 미국 유통 독먹이제 3종(US Combat Source Kill Max (US-CSKM), US Hot Shot MaxAttrax Roach Bait (US-HSM) 및 US Raid Double Control Small Roach Bait (US-RDC))의 독일바퀴(Blattella germanica)에 대한 살충효력을 검증하였다. 6종의 독먹이제 중 fipronil을 살충 주성분으로 사용하는 세 가지의 독먹이제(K-CUS, K-CP 및 US-CSKM)가 속효성 및 높은 살충효과를 나타내었다. K-CUS과 K-CP의 살충효력의 지속성을 검정하기 위해 두 제품을 개봉 후 6개월 및 12개월 이후에 추가로 생물검정을 실시한 결과, 두 제품 모두 시간이 지남에 따라 제품 개봉 직후에 비해 살충효 과가 감소하는 경향을 보였지만, 40시간 이내 독일바퀴에 대한 사충률이 90%에 도달하는 것을 감안하면 적어도 이들 독먹이제의 옥내 설치 후 1 년동안은 살충효과가 유지되는 것으로 판단된다.
        4,000원
        7.
        2019.04 구독 인증기관·개인회원 무료
        Naturally occurring plant toxins, such as benzoates, have been shown to have insecticidal effects on some pest insects. In this study three commercially available benzoates, methyl benzoate (MB), ethyl benzoate (EB), and vinyl benzoate (VB), were assessed for their contact toxicity against Aphis gossypii Glover and its lacewing predator Chrysoperla carnea Stephens. Toxicity of 1% MB, EB, and VB showed 100%, 85% and 60% mortality of A. gossypii at 24 h. In addition, a mixture of MB and EB showed higher synergistic effect than mixtures of MB+VB or EB+VB against A. gossypii. Toxicity at 1% concentration of three benzoates against A. gossypii showed lower toxicity against the larvae of C. carnea after 72 h of exposure than A. gossypii. Our result suggest that benzoates have high potential as environmentally safe biopesticides for A. gossypii control.
        8.
        2019.04 구독 인증기관·개인회원 무료
        Aerosol-type insecticides are one of the most widely used household insecticides to control mosquitoes. Not only the structural difference such as the size and shape of orifice, but also the difference in formulation including solvent system and proportion of propellent can affect the efficacy of those aerosol products. Orifice structure can be represented by nozzle diameter while solvent systems are divided into water-based and oil-based types in wide view. In the present study using Asian Tiger Mosquito, Aedes albopictus, we found that the orifice nozzle size made a significant difference in shoot-out range, followed by heterogeneous mortality by distance. Additionally, oil-based spray affected farther space than water-based one. Oil-based solvent system was also responsible for lowering the LT50 and KT50(knock-down time 50) values. Therefore, they are one of the definitive parts in insecticides formulation that determine the way of insecticide delivery. In terms of insecticide resistance management, we define efficiency of insecticide as the proportion of insecticide treated to environment that is solely acted as toxin to target pest. The higher efficiency of insecticide, the less overused chemicals we face, which may imply lower risk of resistance development. Thus, we argue that formulations, the specific route of insecticide discharge to environment, should be deliberately considered not only for consumer satisfaction, but also for insecticide resistance management.
        9.
        2018.10 구독 인증기관·개인회원 무료
        The organism evaluation equipment (OEE) was developed to determine the insecticidal effect of atmospheric-pressure plasma jets (APPJ). The equipment consisted of a plasma-generating acrylic chamber (PGAC) equipped with a plasma generator, a plasma-maintaining acrylic chamber (PMAC), and plasma efficacy evaluation container (PEEC). The amount of reactive oxygen species (ROS) directly exposed to PEEC in the PMAC was measured using an ozone calculator. The ROS concentration in the PGAC and PEEC increased over time, and the optimum position for the PEEC was selected showing the lowest variance of ROS concentration. Based on the established equipment, five major insect pests (Aphis gossypii, Bemisia tabaci, Helicoverpa armigera, Tetranychus kanzawai, and Thrips palmi) were tested, and their knockdown time, recovery time, and median lethal time (LT50) were determined. As a result, B. tabaci showed the fastest knockdown in respond to the plasma, but the remaining insect pests were knock downed within 2-3 min. Recovery was the fastest in T. palmi and T. kanzawai and slowest in B. tabaci. The LT50 were determined as 13 and 16 min in B. tabaci and T. palmi, respectively. However, the LT50 of other insect pests showed over 21 min. In conclusion, the OEE system can be used to measure the optimum exposure time of plasma against various insect pests, and the plasma might be used as an alternative tools for pest control in the future.
        10.
        2016.10 구독 인증기관·개인회원 무료
        Insecticidal toxicities of the isolated constituent of Eucalyptus dives oil and its analogues were bioassayed. 3-Carvomenthenone was isolated by chromatographic techniques and determined by EI-MS, 13C-NMR,1H-NMR, 1H-1H COSY, and HMQC. In the fumigant bioassay against P. interpunctella, cyclohexenone exhibited the strongest insecticidal toxicity (LD50 against larvae and adults, 2.45 and 3.63 μg/cm3), followed by methylcyclohexenone, seudenone, and 3-carvomenthenone. In the structure-activity relationships between 3-carvomenthenone analogues and insecticidal toxicity, the mode of the insecticidal action of 3-carvomenthenone, cyclohexenone, methylcyclohexenone, and seudenone was through the dermal organs of T. castaneum and P. interpunctella. This study indicates that 3-carvomenthenone, cyclohexenone, methylcyclohexenone, and seudenone have potential capacity for the development as safety natural agents to control the stored grain insects.
        11.
        2015.04 구독 인증기관·개인회원 무료
        Heating for disinfestation has been practiced of at the condition of 55-60°C for at least 48 hours in various facilities of stored and processed agricultural products. However, it has been required to reduce temperature and time due to the economic efficiency. To improve disinfestation efficiency of heating, we demonstrated whether combined treatments of heat with other agents exert synergistic for disinfestation. Heat treatments were combined with 1 ppm diatomaceous earth (DE), 10 ppm phosphine or 10% carbon dioxide against Plodia interpunctella, Sitophilus zeamais and Tribolium castaneum. Insects were treated single or multiple combinations of each component for 6 h at either 25°C or 40°C, then mortalities were monitored for 14 days post-treatments. Combined treatments greatly enhanced mortalities and shorten killing time of three species rather than single treatments. Particularly, heat treatments with 1 ppm DE and 10 ppm phosphine completely lethal within 3-6 h post-treatments, but heating with 10% CO2 was not much effective. Among three species, S. zeamais adults were more suscpetable to heat but both larvae and adults of T. castaneum was highly susceptible to phosphine. Our results clearly showed that combined treatment of DE or phosphine with mild heating (40°C) greatly improved mortalities of three major stored pest insects and provide advanced techniques for disinfestation of stored product pests.
        12.
        2009.05 구독 인증기관·개인회원 무료
        whitefly, Bemisia tabaci (Gennadius) have a wide host range including cucumber, tomato, and pepper, resulting in loss of crop yield. In this study, we tested larvicidal efficacy of several on-the-market environment–friendly agricultural materials (EFAM) to select the effective products after the target pests were stabilized in indoor rearing condition. The developmental periods of two whiteflies are as follows: in the case of T. vaporariorum, egg duration is 9.6 days, and nymph is 18.9 days, and in the case of B.tabaci, egg durationis 7.4 days, and nymph is 15.2 days under 25℃ with relative humidity (RH) of 60±5% and a photoperiod of 16L : 8D. The total period of T. vaporariorum as 5 days longer than B. tabaci. Among 22 EFAMs six products showed more than 60% of insecticide efficacy for against T. vaporariorum BTVB, BTVD, BTVG, BTVL, BTVM, and BTVS. On the other hand, seven EFAM products including showed over 60% of insecticide efficacy against B. tabaci BTVD, BTVG, BTVK, BTVL, BTVM, BTVN, and BTVU. In the case of Spodptera litura previously, xxEFAMs were tesed against 2nd instar S.litura, and EFAMs were found to have more than 90% efficacy. Test of these six EFAMs against entire larval stages were performed in this study. Although some of these products showed still more than 90% of insecticidal efficacy against up to 3rd instar larvae, the efficacy of these EFAMs sharply decreased as ages increase, result is less than 60% of efficacy of the products at most. This result indicates the difficulty to control S. litura with the on-the-market EFAMs alone under economic injury level. Collectively, it is required to find more EFAMs and find alternative method to control those insect pests tested in this study.
        13.
        2008.05 구독 인증기관·개인회원 무료
        The turnip aphid is a worldwide pest, damaging mainly to crucifers. In order to understand the life parameters of Lipaphis erysimi for the eventual goal of control, the developmental periods, survival rates, lifespan, and fecundity of the species were investigated under five temperature regimes (15℃ - 35℃). Furthermore, the efficacy of several environment-friendly agricultural materials (EFAMs) that are on the market was subjected to test in order to obtain further accurate information. The developmental period of the turnip aphid nymph was longest at 15ºC as 16.9 days, shortened as temperature goes up to 25ºC (5.4 days), and then somewhat increased at 30ºC (5.9 days), suggesting that the most efficient temperature for nymphal development could be around 25ºC. Mortality of the nymphal turnip aphid was obvious at 35ºC, whereas it was minimal at other temperature schemes. The longevity of adults shortened as temperature goes up to 30ºC. In particular, the maximum lifespan for adults continued for 55 days at 15ºC, but shortened to 21 days at 30ºC. The total fecundity per day was 35.7 at 15ºC, 81 at 20ºC, 64.2 at 25ºC, and 6.6 individuals at 30ºC, showing the highest fecundity at 20ºC. After the turnip aphids were successfully stabilized in indoor environment the insecticidal activity was tested and mortality was determined 12, 24, 36, and 48 hrs after EFAMs are treated. Several on-the-market EFAMs showed more than 90% of insecticidal activity within 24 hrs or 48 hrs, but a few showed less than 90% activity, signifying importance of selection of proper EFAMs.