검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.05 구독 인증기관·개인회원 무료
        Radioactive waste generated during decommissioning of nuclear power plants is classified according to the degree of radioactivity, of which concrete and soil are reclassified, some are discharged, and the rest is recycled. However, the management cost of large amounts of concrete and soil accounts for about 40% of the total waste management cost. In this study, a material that absorbs methyl iodine, a radioactive gas generated from nuclear power plants, was developed by materializing these concrete and soil, and performance evaluation was conducted. A ceramic filter was manufactured by forming and sintering mixed materials using waste concrete, waste soil, and by-products generated in steel mills, and TEDA was attached to the ceramic filter by 5wt% to 20wt% before adsorption performance test. During the deposition process, TEDA was vaporized at 95°C and attached to a ceramic filter, and the amount of TEDA deposition was analyzed using ICP-MS. The adsorption performance test device set experimental conditions based on ASTM-D3808. High purity nitrogen gas, nitrogen gas and methyl iodine mixed gas were used, the supply amount of methyl iodine was 1.75 ppm, the flow rate of gas was 12 m/min, and the supply of water was determined using the vapor pressure value of 30°C and the ideal gas equation to maintain 95%. Gas from the gas collector was sampled to analyze the removal efficiency of methyl iodine, and the amount of methyl iodine detected was measured using a methyl iodine detection tube.
        2.
        2015.09 KCI 등재 서비스 종료(열람 제한)
        This research was performed by means of several different virgin granular activated carbons (GAC) made of each coal, coconut and wood, and the GACs were investigated for an adsorption performance of iodine-131 in a continuous adsorption column. Breakthrough behavior was investigated that the breakthrough points of the virgin two coals-, coconut- and wood-based GACs were observed as bed volume (BV) 7080, BV 5640, BV 5064 and BV 3192, respectively. The experimental results of adsorption capacity (X/M) for iodine-127 showed that two coal- based GACs were highest (208.6 and 139.1 μg/g), the coconut-based GAC was intermediate (86.5 μg/g) and the wood-based GAC was lowest (54.5 μg/g). The X/M of the coal-based GACs was 2∼4 times higher than the X/M of the coconut-based and wood-based GACs.