Swimming crabs, Portunus trituberculatus(Miers) are commercially important off the coasts of Korea, Japan and China. Harvest of swimming crabs has been fluctuated along their distribution ranges. Fluctuations in the interannual harvest of swimming crabs may be correlated with the survival rate during the larval period. The survival rates, intermolt periods, and growth of larval swimming crabs were investigated in the laboratory. Larval swimming crabs are released and undergo development from April to August off the western coast of Korea in the Yellow Sea. Sea surface temperatures off the western coast of Korea during the larval season were used for the laboratory experiments, and ranged from 22 to 26℃. Larvae were individually cultured at four different temperatures, 22℃, 24℃, 26℃, and 28℃. Zoea molted to megalopa at all temperatures and developed to the first crab stage at 24℃, 26℃, and 28℃. Survival rates from zoea I to the first crab stage increased with increasing temperatures. Intermolt period and the growth rate of the mean carapace length were inversely correlated with temperature. Our research helps understand the changes in survival rate and growth of larval swimming crabs resulting from changing oceanic temperatures. Further, our study suggests that the fluctuations in fishery harvest of swimming crabs off the coast of Korea may be related to changes in larval survival affected by changing ocean conditions.
This study was conducted to investigate egg development and larvae morphological development of catfish and to provide basic data to clarify the genetic relationship with Siluriformes fish. The mother fish that was used in this study was caught in the stream of Nakdong River in Uiseong-gun, Gyeongbuk. The temperature range of the breeding was 23.0- 25.0℃ (mean 24.0±1.0℃) and egg size was 1.62-1.70 mm (mean 1.66±0.05, n=30). Eggs of catfish began hatching at 54 hours and 40 minutes after fertilization. Immediately after hatching, the total length of larvae was 3.60-3.65 mm (mean 3.62±0.03, n=5) and had an egg yolk without swimming ability. On the third day after hatching, the larvae at the medium stage was 8.00-8.65 mm (mean 8.32±0.45) in total length, and two pairs of whiskers formed around the mouth were elongated. On the 12th day after hatching, the larvae at the juvenile stage was 16.5-17.0 mm (mean 16.7±0.35) in total length, and the stem of each fin was in the range, and the juvenile at this period was morphologically similar to the mother fish.
This study was conducted to observe egg and larvae morphological development of carp to obtain basic data for resource conservation and taxonomic research. Brood carp used in the research (total length 67.3-75.5 cm, average 71.0±3.45 cm) were bred in a circular rearing aquarium (600×300×100 cm) using a running water system from January to July, 2015. Breeding water temperature was maintained at 23.0-25.0℃(average 24.0℃). Fertilized carp eggs were translucent and globular, and their size was 1.75-1.89 mm (average 1.82±0.06 mm). Blastoderms formed 10 min after fertilization and reached the two-cell stage 30 min after fertilization. Then, the embryo turned dark and exhibited melanophores, and blood started flowing from the heart across the egg yolk at 42 hrs and 50 min after fertilization. Hatching began 70 hrs and 26 min after fertilization larvae emerged through the egg membrane, starting from the head. The length of prelarvae immediately after hatching was 5.23-5.38 mm (average 5.31±0.11 mm) the mouth and anus were closed, and the pectoral fin was formed. Postlarvae at 18 days after hatching had a total length of 11.9-13.9 mm (average 12.9±1.40 mm), separate anal fin and back membranes, and fin ray. Juveniles fish at 35 days after hatching had a total length of 29.9-30.2 mm (average 30.1±0.13 mm), with the body covered with scales, and the same number of fin rays, color, and shape as their broodstork.
On the 15 days after hatching, the larvae was 4.24-5.10 mm (mean 4.66±2.18 mm) in total length, and the fins of the membrane started to develop into a fan shape and the melanophore was deposited upper the alimentary canal of the abdomen and on the bladder. At 35 days after hatching, the post-larvae formed a branch-shaped melanophore on the head part with a total length of 6.98-12.5 (mean 9.35±1.71) mm, formed on the upper and lower parts of the caudal part, formed on the upper and lower parts of the caudal part, and deposited under the head part and abdomen. At 40 days after hatching, the juvenile was 11.3-18.1 (mean 14.9±1.53) mm in total length.
We observed the osteological development of larval and juvenile red spotted grouper (Epinephelus akaara) in order to generate data for the assessment of skeletal deformities and to inform phylogenetic systematics research. Larvae and juveniles were obtained from a aquafarm in Muan-gun, Jeolla-namdo Province, Korea. The average water temperature at the time of breeding was 23.0°C and average water salinity was 33.0 psu. Freshly hatched fish larvae had not undergone any ossification, but ossification of the parasphenoid bone, which forms the base of the cranium, occurred as the juveniles reached an average body length (BL) of 2.49 mm. At the same time, ossification of the preopercle and opercle occurred in the operculum, and ossification of the maxilla, which forms the upper jaw, and the dentary bones, which form the lower jaw, began. In addition, ossification of the vertebra occurred by formation of 7 vertebral centra and the neural spine in the abdominal vertebra. When the juveniles reached an average (BL) of 5.22 mm, ossification of the nasal, lateral ethmoid, and alisphenoid bones occurred in the cranium; ossification of the endopterygoid and metapterygoid bones began in the palatine region; and ossification of the hypohyal and interhyal bones occurred in the hyoid arch. At an average (BL) of 20.9 mm, ossification of the basisphenoid bone in the cranium and the suborbital bone in the orbital region occurred. Ossification of the vertebra then occurred by the formation of long pairs of ribs from the third to the ninth abdominal vertebrae, completing osteological development.
This study was conducted in order to examine the egg development in red spotted grouper, Epinephelus akaara and the morphological development of its larvae and juveniles, and to obtain data for taxonomic research. This study was conducted in June 2013, and 50 male and female fish were used for the study. One hundred μg/kg of LHRHa was injected into the body of the fish for inducing spawning, and the fish were kept in a small-sized fish holder (2×2×2 m). Eggs were colorless transparent free pelagic eggs, 0.71–0.77 mm large (mean 0.74±0.02 mm, n=30), and had an oil globule. Hatching started within 27 h after fertilization. Pre-larvae that emerged just after hatching were 2.02–2.17 mm in total length (mean 2.10±0.11 mm), their mouth and anus were not opened yet, and the whole body was covered with a membrane fin. Post-larvae that emerged 15 days post hatching were 3.88–4.07 mm in total length (mean 3.98±0.13 mm), and had a ventral fin with two rays and a caudal fin with eight rays. Juveniles that were formed at 55 d post hatching, were 31.9–35.2 mm in total length (mean 33.6±2.33 mm), with red color deposited over the entire body, and black chromophores deposited in a spotted pattern. The number of fin rays, body color, and shape were the same as that in the adult fish.
This study was examined the ovogenesis of Ussurian bullhead, Leiocassis ussuriensis and the morphological development of its larvae and juveniles and to use the results as basic information for the preservation of species and resource enhancement. For artificial egg collection, human chorionic gonadotropin (HCG) was injected at a rate of 10 IU per gram of fish weight. During breeding period, water temperature maintained at 24.5~26.5℃ (mean 25.0±0.05℃). The process of ovogenesis reached the two-cell stage in 50 minutes after fertilization. In 73 hours of fertilization the movement of the embryoid body became active state and the larvae began to hatch from the tail through the oolemma. Length of prelarvae were 6.33~6.50 mm long (mean 6.40±0.06 mm) just after hatching having yolk with their mouth not opened. After thirty eight days of hatching, juveniles were 30.6∼32.5 mm long (mean 31.5±0.65 mm). The color was dark yellowish brown throughout the entire body, and the number of caudal fin rays developed to thirty six perfectly.
Newly hatched black porgy larvae (Acanthopagrus schlegeli) swam to the surface, with the mouth and anus still closed and were 1.90–2.11 mm (mean, 2.0 mm) in total length (TL). The larvae were 2.71–2.94 mm TL (mean, 2.82 mm) on day 2 after hatching. At this time, about two-thirds of the yolk was absorbed, the bladder and intestines had formed, and the mouth and anus were open. Total length was 4.32–4.66 mm (mean, 4.45 mm) at the post-larval stage on days 5–6 after hatching, and the yolk and oil globule were almost absorbed. The end of the notochord began to flex, and 6–8 caudal fin rays were visible. The larvae were 15.37–16.1 mm TL (mean, 15.83 mm) at the juvenile stage on days 30–32 after hatching, and the number of rays in all fins was completely revealed.
속성장 육종 넙치(selected line of olive flounder cultured, SF)의 수정란의 부화율 및 기형률, 자치어의 성장을 일반 넙치(unselected line of olive flounder cultured, UF)와 비교하였다. 동일한 날에 획득한 SF구 및 UF구 수정란의 부화율은 SF구가 96.21.7%, UF구는 90.42.1%로 SF구가 높았으며, 기형률은 UF가 유의하게 높았다. 이들 수정란으로부터 부화한 자어를 8
넙치 자치어의 초기 발육단계에 따른 소화관의 형태 발달과정을 관찰한 결과, 부화 직후의 전기 자어는 평균전장 (n=20)로 입과 항문이 아직 열려 있지 않았고, 소화관은 배체와 난황 사이에 원시 소화관의 형태로 거의 직선상으로 식도에서 항문이 생길 부분까지 길게 신장되어 있는 형태였다. 부화 후 일째 후기 자어는 평균 전장 (n=20)로 소화관이 발달하여 먹이의 섭취활동이 활발하였으며, 소화관은 배쪽으로 팽창하여 장과 연결되어 위가 발달하기 시작하였고,