Methods for measuring or estimating of ground shape by a laser range finder and a vision sensor(exteroceptive sensors) have critical weakness in terms that these methods need prior database built to distinguish acquired data as unique surface condition for driving. Also, ground information by exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Thereby, UGVs have some difficulties regarding to finding optimal driving conditions for maximum maneuverability. Therefore, this paper proposes a method of recognizing exact and precise ground shape using Inertial Measurement Unit(IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.
The human-following is one of the significant procedure in human-friendly navigation of mobile robots. There are many approaches of human-following technology. Many approaches have adopted various multiple sensors such as vision system and Laser Range Finder (LRF). In this paper, we propose detection and tracking approaches for human legs by the use of a single LRF. We extract four simple attributes of human legs. To define the boundary of extracted attributes mathematically, we used a Support Vector Data Description (SVDD) scheme. We establish an efficient leg-tracking scheme by exploiting a human walking model to achieve robust tracking under occlusions. The proposed approaches were successfully verified through various experiments.