This study aims to analyze the cost of climate change damages to laver and sea mustard aquaculture, which are considered to be highly vulnerable to climate change in Korea. For this purpose, the correlation between aquaculture production and climate factors such as water temperature, salinity, air temperature, and precipitation was estimated using a panel regression model. The SSP scenario was applied to predict the changes in production and damage costs due to changes in future climate factors. As a result of the analysis, laver production is predicted to decrease by 18.0-27.2% in 2050 and 20.6-61.6% in 2100, and damage costs are predicted to increase from 29.7-50.8 billion KRW in 2050 to 35.7-116.1 billion KRW in 2100. Sea mustard production is projected to decrease by 24.5-37.2% in 2050 and 24.0-34.5% in 2100, with similar damage costs of 41.1-61.8 billion KRW and 41.1-58.6 billion KRW, respectively. These damage costs are expected to occur in the short term as damage caused by fishery disasters such as high temperatures, and in the long term as a decrease in production due to changes in aquaculture sites. Therefore, measures such as strengthening the forecasting system to prevent high-temperature damage, developing high-temperature-resistant varieties, and relocating fishing grounds in response to changes in aquaculture sites will be necessary.
Laver aquaculture, which occupies a large proportion in the aquaculture industry in Korea, is still highly dependent on human labor. Therefore, it is necessary to study the development of an automatic system to improve the working environment and increase the efficiency of aquaculture production systems. The purpose of this study is to evaluate the economic feasibility of an improved system in a study for the loading-unloading and automatic weighing systems in laver aquaculture industry. Economic analysis of the developed unloading and automatic weighing system were implemented under various conditions to calculate more accurate benefits and costs. As a result of this study, the economic feasibility was found to be very high in the three models: net present value (NPV), benefit-cost ratio (B/C), internal rate of return (IRR). Moreover, the results of sensitivity analysis showed that the economical efficiency of the automatic loading, unloading, and weighing system in laver aquaculture was very high.
In this study, an automatic system for improving the working environment and increasing production efficiency of a laver aquaculture industry in Korea was developed by combining a hydraulic control system and a load cell in a current landing work of the laver. The improved gathering laver system allowed the automatic gathering process of the laver in the sea with the hydraulic control system connected to a cutting machine of the laver on the operating ship, which has been used for gathering the laver semi-automatically in a form of the traditional farming method. The transporting process of the laver from an operating ship to the land was improved as follows. A frame installed on the operating ship and the bag nets were designed and made to hold about 1,000 kg of the laver inside. The bag nets contain the laver on the improved operating ship were tied in knots and hooked on a crane using a load cell. The weight is measured immediately by lifting the bag nets through the load cell system. Weight information is communicated to the fishermen and successful bidders through the application. The advantages of the improved system can help fishermen to fish by improving their working environment and increasing production efficiency. The field survey to improve the landing operation of the laver aquaculture was conducted in Gangjin, Goheung, Shinan, Wando, Jindo, and Haenam in South Jeonnam Province. A total of 10 sites including Gunsan in Jeonbuk Province, Daebu Island in Ansan City, Jebu Island in Hwaseong City in Gyeonggi Province, and Seocheon in Chungnam Province were searched to collect data. Prototypes of the system were tested at the auction house of laver located in Goheung, where laver collection using hydraulic control and landing using road cell could be improved.