Radioactive iodine released from nuclear power plants has been recognized to pose significant risks and environmental hazards. In response to these challenges, extensive investigations into iodine sorbents have been conducted with a particular focus on the utilization of layered double hydroxides (LDH) as a promising candidate. Herein, we have focused on the investigation of LDH materials featuring diverse transition metals for their synthesis, with specific emphasis on CoAl LDH for its proficiency in removing iodine species, particularly IO3 –. Nevertheless, a comprehensive understanding of the removal mechanisms employed by these LDH materials remained elusive. Hence, the primary aim of this study is to elucidate the intricacies of the removal mechanisms through sorption tests, spectroscopic techniques, and theoretical chemistry analyses, subsequently contrasting the experimental outcomes with computational results. For the experimental facet, the synthesis of CoAl LDH was conducted utilizing 0.15 mol L−1 of Co(NO3)2⋅6H2O and 0.06 mol L−1 of Al(NO3)3⋅9H2O to attain a molar ratio (M2+:M3+) of 2.5:1. Subsequently, pH-dependent IO3 – sorption tests were carried out, coupled with X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy, facilitating the elucidation and discourse of the removal mechanism. The theoretical chemistry in this research harnessed ab initio molecular dynamics (AIMD) simulations for structural modeling, atomic density profiles, radial distribution function, analysis of oxide species, and MD-EXAFS spectrum analysis. In summary, this study aims to elucidate iodine removal mechanisms using diverse experimental results, culminating in the revelation that ion-exchange with NO3 – present in the interlayer predominates as the principal mechanism for IO3 – removal. Notably, a distinct spectral feature at approximately 33,190 eV emerged, defying identification through XANES and EXAFS analyses conducted under experimental conditions. In the AIMD simulations, meticulous scrutiny of individual iodine atoms uncovered the prevalence of I−O and I−O−H molecular species, marked by interactions between O and H atoms, with a coordination number of I−O = ~3. This transformation was primarily instigated by proton hopping. As a result, the comparative investigation reveals the dominance of IO3 – intercalation in the CoAl LDH material with the potential to undergo a transformation to the I−O−H molecule upon interaction with protons.
Exploring earth-abundant, highly effective and stable electrocatalysts for electrochemical water splitting is urgent and essential to the development of hydrogen (H2) energy technology. Iron-cobalt layered double hydroxide (FeCo-LDH) has been widely used as an electrocatalystfor OER due to its facile synthesis, tunable components, and low cost. However, LDH synthesized by the traditional hydrothermal method tends to easily agglomerate, resulting in an unstable structure that can change or dissolve in an alkaline solution. Therefore, studying the real active phase is highly significant in the design of electrochemical electrode materials. Here, metal-organic frameworks (MOFs) are used as template precursors to derive FeCo-LDH from different iron sources. Iron salts with different anions have a significant impact on the morphology and charge transfer properties of the resulting materials. FeCo-LDH synthesized from iron sulfate solution (FeCo-LDH-SO4) exhibits a hybrid structure of nanosheets and nanowires, quite different from other electrocatalysts that were synthesized from iron chloride and iron nitrate solutions. The final FeCo-LDH-SO4 had an overpotential of 247 mV with a low Tafel-slope of 60.6 mV dec-1 at a current density of 10 mA cm-2 and delivered a long-term stability of 40 h for the OER. This work provides an innovative and feasible strategy to construct efficient electrocatalysts.
Chloride ions ingress continuously in reinforced concrete through pores of it by Cl-. Recently, new materials removing harmful anions have been developed. Layered double hydroxides(LDH) has an excellent ability to remove harmful anions because various anions can be adsorbed in the interlayer space between divalent and trivalent cations. In this study, Ca/Al-NO3 and Mg/Al-NO3 LDH were prepared by using a co-precipitation method. Experiments for binding chloride ions of LDH were conducted by using potentiometric method.