Bortezomib (BTZ) and dasatinib (DA) are two substantial anti-cancer agents with side effects on the human body. In this research, we fabricated a novel electrochemical sensor modified by CuFe2O4/ SmVO4 nanocomposite and 1-ethyl-3-methylimidazolium chloride (1E3MC) as an ionic liquid (IL) ( CuFe2O4/SmVO4/IL/CPE) for coinciding investigation of BTZ and DA for the first time. The CuFe2O4/ SmVO4 synthesized were determined and certified through field-emission scanning electron microscopy (FE-SEM), energy diffraction X-ray (EDX), and X-ray diffraction (XRD). The capability of the sensor was investigated by different electrochemical techniques such as cyclic voltammetry (CV), chronoamperometry (CHA), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The attained data showed that the oxidation signal of bortezomib and dasatinib promoted as an innovative electrochemical sensor. After optimization of the conditions using this sensor at pH 7.0, the oxidation signal of bortezomib and dasatinib showed to be linear with drug concentrations in the range of 0.09–90 μM and 100–500 μM with a detection limit of 5.4 nM and 7.0 μM, respectively, using differential pulse voltammetry method. The values of D and electro-transfer coefficient (α) achieved 2.5 × 10− 5 cm2 s− 1 and 0.99, respectively. The proposed electrochemical sensor exhibited acceptable selectivity and sensitivity for simultaneous detection of bortezomib and dasatinib in pharmaceutical and biological samples.
In the present investigation, a new electrochemical sensor based on carbon paste electrode was applied to simultaneous determine the tramadol, olanzapine and acetaminophen for the first time. The CuO/reduced graphene nanoribbons (rGNR) nanocomposites and 1-ethyl 3-methyl imidazolinium chloride as ionic liquid (IL) were employed as modifiers. The electrooxidation of these drugs at the surface of the modified electrode was evaluated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and chronoamperometry. Various techniques such as scanning electron microscopy (SEM) with energy dispersive X-Ray analysis (EDX), X-ray diffraction (XRD) and fourier-transform infrared spectroscopy (FTIR), were used to validate the structure of CuO-rGNR nanocomposites. This sensor displayed a superb electro catalytic oxidation activity and good sensitivity. Under optimized conditions, the results showed the linear in the concentration range of 0.08–900 μM and detection limit (LOD) was achieved to be 0.05 μM. The suggested technique was effectively used to the determination of tramadol in pharmaceuticals and human serum samples. For the first time, the present study demonstrated the synthesis and utilization of the porous nanocomposites to make a unique and sensitive electrode and ionic liquid for electrode modification to co-measurement of these drugs.
Gamma-ray spectroscopy, which is an appropriate method to identify and quantify radionuclides, is widely utilized in radiological leakage monitoring of nuclear facilities, assay of radioactive wastes, and decontamination evaluation of post-processing such as decommissioning and remediation. For example, in the post-processing, it is conducted to verify the radioactivity level of the site before and after the work and decide to recycle or dispose the generated waste. For an accurate evaluation of gamma-ray emitting radionuclides, the measurement should be carried out near the region of interest on site, or a sample analysis should be performed in the laboratory. However, the region is inaccessible due to the safety-critical nature of nuclear facilities, and excessive radiation exposure to workers could be caused. In addition, in the case of subjects that may be contaminated inside such as pipe structures generated during decommissioning, surveying is usually done over the outside of them only, so the effectiveness of the result is limited. Thus, there is a need to develop a radiation measurement system that can be available in narrow space and can sense remotely with excellent performance. A liquid light guide (LLG), unlike typical optical fiber, is a light guide which has a liquid core. It has superior light transmissivity than any optical fiber and can be manufactured with a larger diameter. Additionally, it can deliver light with much greater intensity with very low attenuation along the length because there is no packing fraction and it has very high radiation resistant characteristics. Especially, thanks to the good transmissivity in UV-VIS wavelength, the LLG can well transmit the scintillation light signals from scintillators that have relatively short emission wavelengths, such as LaBr3:Ce and CeBr3. In this study, we developed a radiation sensor system based on a LLG for remote gamma-ray spectroscopy. We fabricated a radiation sensor with LaBr3:Ce scintillator and LLG, and acquired energy spectra of Cs-137 and Co-60 remotely. Furthermore, the results of gamma-ray spectroscopy using different lengths of LLG were compared with those obtained without LLG. Energy resolutions were estimated as 7.67%, 4.90%, and 4.81% at 662, 1,173, and 1,332 keV, respectively for 1 m long LLG, which shows similar values of a general NaI(Tl) scintillator. With 3 m long LLG, the energy resolutions were 7.92%, 5.48%, and 5.07% for 662, 1,173, and 1,332 keV gamma-rays, respectively.
In this study, skin permeation enhancement was confirmed by designing it to have a structure and composition similarity to the intercellular lipids that improve miscibility with skin by cross-linked lipids poloxamer. The cross-linked lipids poloxamer was synthesized and analyzed by 1H NMR that structure dose had conjugated pluronic with ceramide3. Active component is released by modification of liquid crystal structure because PPO part, large-scale molecule block of pluronic, has hydrophobic nature at skin temperature of 35℃. Conjugated pluronic with ceramide3 was synthesized using Pluronic F127 and p-NPC (4-nitrophenyl chloroformate) at room temperature yielded 89%. Pluronic(Ceramide 3-conjugated Pluronic) was synthesized by reaction of p-NP-Pluronic with Ceramide3 and DMAP. The yield was 51%. This cross-linked lipids poloxamer was blended and dissolved at isotropic state with skin surface lipids, phospholipid, ceramide, cholesterol and anhydrous additive solvent. Next step was preceded by α-Transition at low temperature for making the structure of Meso-Phase Lamella, and non-hydrous skin analogue liquid crystal using thermo-sensitivity smart sensor, lamellar liquid crystal structure through aging time. For confirmation of conjugation thermo-sensitivity smart sensor and non-hydrous skin analogue liquid crystal, structural observation and stability test were performed using XRD(Xray Diffraction), DSC(Differential Scanning Calorimetry), PM (Polarized Microscope) And C-SEM (Cryo-Scanning Electron Microscope). Thermo-sensitivity observation by Franz cell revealed that synthesized smart sensor shown skin permeation effect over 75% than normal liquid crystal. Furthermore, normal non-hydrous skin analogue liquid crystal that not applied smart sensor shown similar results below 35℃ of skin temperature, but its effects has increased more than 30% above 35℃.
본 연구에서는 II-IV 족 화합물 반도체인 CdS를 이용한 액정광변조 방식의 X-ray 검출 시스템을 제안하였다. 제안 된 시스템은 검출부, 신호처리부, 액정 구동 및 투과량 측정부, 마이크로컨트롤러부, 입출력부로 구성되었으며, 소형화 및 휴대형에 적합하게 제작되었다. 또한, 검출 범위 선택을 통하여 광범위한 조건에서 측정이 가능하도록 구성하였다. 제안된 시스템의 성능을 평가하기 위하여 조사선량 변화에 따른 CdS 센서의 출력 특성을 확인하였으며, 우수한 상관 관계를 확인할 수 있었다. 또한, 인가전압에 따른 액정의 변화를 관찰하여 인가 전압에 따른 광투과율을 측정하였으며, 높은 상관관계와 우수한 재현성을 확인할 수 있었다. 이러한 결과를 통하여 본 연구에서 제안된 액정 광변조 방식의 특징인 우수한 재현성과 노이즈 내성 특성을 확인할 수 있었으며, 본 연구를 통하여 제안된 CdS 셀 기반 광변조 방식 의 휴대형 X선 검출 시스템이 소형, 저가형, 휴대형 시스템으로 적용이 가능할 것으로 판단되었다.