High-strength low-alloy steel is one of the widely used materials in onshore and offshore plant engineering. We investigated the alloying effect of solute atoms in α-Fe based alloy using ab initio calculations. Empirical equations were used to establish the effect of alloying on the Vicker’s hardness, screw energy coefficient, and edge dislocation energy coefficient of the steel. Screw and edge energy coefficients were improved by the addition of V and Cr solute atoms. In addition, the addition of trace quantities of V, Cr, and Mn enhanced abrasion resistance. Solute atoms and contents with excellent mechanical properties were selected and their thermal conductivity and thermal expansion behavior were investigated. The addition of Cr atom is expected to form alloys with low thermal conductivity and thermal expansion coefficient. This study provides a better understanding of the state-of-the-art research in low-alloy steel and can be used to guide researchers to explore and develop α-Fe based alloys with improved properties, that can be fabricated in smart and cost-effective manners.
A low thermal expansion ceramic, cordierite (2MgO·2Al2O3·5SiO2), was synthesized using pyrophyllite. Pyrophyllite usually consists of SiO2 and Al2O3, which are the main components of cordierite. MgCO3 and Al(OH)3 were added in various amounts to pyrophyllite and fired for synthesis and sintering. α-cordierite crystallized from 1000 oC with mixing of 20 wt% MgCO3 and 1.7 wt% Al(OH)3, and un-reacted cristobalite was also detected with the cordierite. As the temperature was increased to 1400 oC, the cordierite yield was gradually increased. Powder compacts of the synthesized cordierite were sintered between 1250 oC ~ 1400 oC; the sintered samples showed a low thermal expansion coefficient of 2.1 × 10−6/ oC and typical sintering behavior. It is anticipated that it will be possible to synthesize cordierite ceramics on a mass production scale using the mineral pyrophyllite.
The effect of alpha phase on the fatigue properties of Fe-29%Ni-17%Co low thermal expansion alloy was investigated. Two kinds of alloys (Base alloy and Alpha alloy) were prepared by controlling the minimal alloy composition. Microstructure observation, tensile, high-cycle fatigue, and low-cycle fatigue results were measured in this study. The Base alloy microstructure showed typical austenite γ phase. Alpha alloy represented the dispersed phase in the austenite γ matrix. As a result of tensile testing, Alpha alloy was found to have higher strengths (Y.S. & T.S.) and lower elongation compared to those of the Base alloy. High cycle fatigue results showed that Alpha alloy had a higher fatigue limit (360MPa) than that (330MPa) of the Base alloy. The Alpha alloy exhibited the superior high cycle fatigue property in all of the fatigue stress conditions. SEM fractography results showed that the alpha phase could act to effectively retard both fatigue crack initiation and crack propagation. In the case of low-cycle fatigue, the Base alloy had longer fatigue life in the high plastic strain amplitude region and the Alpha alloy showed better fatigue property only in the low plastic strain amplitude region. The fatigue deformation behavior of the Fe-29%Ni-17%Co alloy was also discussed as related with its microstructure.
Li2O-Al2O3-SiO3계 결정화유리의 저온합성을 위하여 출방원료로서 각 해당 금속 알콕시드를 사용하였다. 알코올을 용매로 충분히 첨가하고, drying control chemical additive로 dimethy1 formamide를 적당량 첨가한 혼합용용액을 과잉의 물로 충분히 가수분해시킨 습윤겔을 저온으로 건고하여 균열이 없는 건조된 monolith겔을 합성하였다. 건조겔로부터 750-950˚C로 10시간 이상 소결하여 저열팽창성을 나타내는 β-eucrypytite(β-quartz 고용체), Li2O· Al2O3· 3SiO2및 β-spodumene등의결정상을 석출시켰다.