검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2011.10 구독 인증기관·개인회원 무료
        Testes‐derived unipotent male germ‐line stem (GS) cells can acquire multipotency under appropriate culture conditions to become mGS cells which can contribute to all three germ‐layers. This study was designed to investigate the epigenetic characteristics of mGS cells derived from adult mouse testes (maGS cells). The GS cells were isolated from 4 6 week DBA mouse and were cultured in Dulbecco’s modified Eagle Medium supplemented with 15% (v/v) fetal bovine serum, 1,000 U/ml LIF, 4 ng/ml GDNF at 37℃ in an humidified atmosphere of 5% CO2 in air to derive the maGS cells. The multipotency of maGS cells were verified by morphological and gene expression analyses, teratoma formation upon transplantation into nude mouse and in vitro differentiation ability. Bisulfite genomic sequencing revealed that GS cells had androgenetic DNA methylation pattern at the Igf2‐H19, Gnas‐Nespas , and Dlk1‐Dio3 imprinted gene clusters which changed to hemi‐zygotic embryonic stem (ES)‐cell like pattern in the maGS cells. Western blot analysis, using modification‐ and residue‐specific antibodies, revealed that both maGS and ES cells had similar level of histone di‐methylation at 4th and 27th lysine residue of histone 3 (H3K4me2 and H3K27me2) which represent “bivalent domain” for regulating self‐renewal and differentiation of mouse ES cells. Both maGS and ES cells also shared similar hisone modification for H3K9me2, H3K79me2, H3K9ac and H3K18ac. However, maGS cells had higher level of H3K- 36me2 and H3S10p. These data suggest that maGS and ES cells share several epigenetic characteristics but they also have their own unique epigenetic marks that may be useful as a molecular marker for their identification.
        2.
        2009.09 구독 인증기관 무료, 개인회원 유료
        Spermatogonial stem cells(SSCs) only are responsible for the generation of progeny and for the transmission of genetic information to the next generation in male. Other in vitro studies have cultured SSCs for proliferation, differentiation, and genetic modification in mouse and rat. Currently, information regarding in vitro culture of porcine Germline Stem Cell(GSC) such as gonocyte or SSC is limited and is in need of further studies. Therefore, in this study, we report development of a successful culture system for gonocytes of neonatal porcine testes. Testis cells were extracted from 10~14-day-old pigs. These cells were harvested using enzymatic digestion, and the harvested cells were purified with combination of percoll, laminin, and gelatin selection techniques. The most effective culture system of porcine gonocytes was established through trial experiments which made a comparison between different feeder cells, medium, serum concentrations, temperatures, and O2 tensions. Taken together, the optimal condition was established using C166 or Mouse Embryonic Fibroblast(MEF) feeder cell, Rat Serum Free Medium(RSFM), 0% serum concentration, 37℃ temperature, and O2 20% tension. Although we discovered the optimal culture condition for proliferation of porcine gonocytes, the gonocyte colonies ceased to expand after one month. These results suggest inadequate acquirement of ingredients essential for long term culture of porcine GSCs. Consequently, further study should be conducted to establish a successful long-term culture system for porcine GSCs by introducing various growth factors or nutrients.
        4,000원