검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2012.11 KCI 등재 서비스 종료(열람 제한)
        This paper describes hierarchical semantic map building using the classified area information in home environments. The hierarchical semantic map consists of a grid, CAIG (Classified Area Information in Grid), and topological map. The grid and CAIG maps are used for navigation and motion selection, respectively. The topological map provides the intuitive information on the environment, which can be used for the communication between robots and users. The proposed semantic map building algorithm can greatly improve the capabilities of a mobile robot in various domains, including localization, path-planning and HRI (Human-Robot Interaction). In the home environment, a door can be used to divide an area into various sections, such as a room, a kitchen, and so on. Therefore, we used not only the grid map of the home environment, but also the door information as a main clue to classify the area and to build the hierarchical semantic map. The proposed method was verified through various experiments and it was found that the algorithm guarantees autonomous map building in the home environment.
        2.
        2011.02 KCI 등재 서비스 종료(열람 제한)
        It is very important for a mobile robot to recognize and model its environments for navigation. However, the grid map constructed by sonar sensors cannot accurately represent the environment, especially the narrow environment, due to the angular uncertainty of sonar data. Therefore, we propose a map building scheme which combines sonar sensors and IR sensors. The maps built by sonar sensors and IR sensors are combined with different weights which are determined by the degree of translational and rotational motion of a robot. To increase the effectiveness of sensor fusion, we also propose optimal sensor arrangement through various experiments. The experimental results show that the proposed method can represent the environment such as narrow corridor and open door more accurately than conventional sonar sensor-based map building methods.
        3.
        2009.08 KCI 등재 서비스 종료(열람 제한)
        Low-cost sensors have been widely used for mobile robot navigation in recent years. However, navigation performance based on low-cost sensors is not good enough to be practically used. Among many navigation techniques, building of an accurate map is a fundamental task for service robots, and mapping with low-cost IR sensors was investigated in this research. The robot’s orientation uncertainty was considered for mapping by modifying the Bayesian update formula. Then, the data association scheme was investigated to improve the quality of a built map when the robot’s pose uncertainty was large. Six low-cost IR sensors mounted on the robot could not give rich data enough to align the range data by the scan matching method, so a new sample-based method was proposed for data association. The real experiments indicated that the mapping method proposed in this research was able to generate a useful map for navigation.
        4.
        2007.09 KCI 등재 서비스 종료(열람 제한)
        Representing an environment as the probabilistic grids is effective to sense outlines of the environment in the mobile robot area. Outlines of an environment can be expressed factually by using the probabilistic grids especially if sonar sensors would be supposed to build an environment map. However, the difficult problem of a sonar such as a specular reflection phenomenon should be overcome to build a grid map through sonar observations. In this paper, the NRF(Neighborhood Recognition Factor) was developed for building a grid map in which the specular reflection effect is minimized. Also the reproduction rate of the gird map built by using NRF was analyzed with respect to a true map. The experiment was conducted in a home environment to verify the proposed technique.