검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 158

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study explores the profound impact of varying oxygen content on microstructural and mechanical properties in specimens HO and LO. The higher oxygen concentration in specimen HO is found to significantly influence alpha lath sizes, resulting in a size of 0.5-1 μm, contrasting with the 1-1.5 μm size observed in specimen LO. Pore fraction, governed by oxygen concentration, is high in specimen HO, registering a value of 0.11%, whereas specimen LO exhibits a lower pore fraction (0.02%). Varied pore types in each specimen further underscore the role of oxygen concentration in shaping microstructural morphology. Despite these microstructural variations, the average hardness remains consistent at ~370 HV. This study emphasizes the pivotal role of oxygen content in influencing microstructural features, contributing to a comprehensive understanding of the intricate interplay between elemental composition and material properties.
        4,000원
        2.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An irradiation hardening of Inconel 718 produced by selective laser melting (SLM) was studied based on the microstructural observation and mechanical behavior. Ion irradiation for emulating neutron irradiation has been proposed owing to advantages such as low radiation emission and short experimental periods. To prevent softening caused by the dissolution of ' and '' precipitates due to irradiation, only solution annealing (SA) was performed. SLM SA Inconel 718 specimen was ion irradiated to demonstrate the difference in microstructure and mechanical properties between the irradiated and non-irradiated specimens. After exposing specimens to Fe3+ ions irradiation up to 100 dpa (displacement per atom) at an ambient temperature, the hardness of irradiated specimens was measured by nanoindentation as a function of depth. The depth distribution profile of Fe3+ and dpa were calculated by the Monte Carlo SRIM (Stopping and Range of Ions in Matter)-2013 code under the assumption of the displacement threshold energy of 40 eV. A transmission electron microscope was utilized to observe the formation of irradiation defects such as dislocation loops. This study reveals that the Frank partial dislocation loops induce irradiation hardening of SLM SA Inconel 718 specimens.
        4,000원
        4.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two tree frogs, Dryophytes suweonensis and Dryophytes japonicus, inhabiting Korea, are morphologically similar and share the same habitats. Therefore, they are identified mainly through their calls, especially for males. Dryophytes suweonensis is registered as an endangered (IUCN: EN grade) and protected species in South Korea. Thus, it is necessary to develop a method to rapidly identify and discriminate the two species and establish efficient protection and restoration plans. We identified significant genetic variation between them by sequencing a maternallyinherited mitochondrial 12S ribosomal DNA region. Based on the sequence data, we designed a pair of primers containing 7 bp differences for high resolution melting (HRM) analysis to rapidly and accurately characterize their genotypes. The HRM analysis using genomic DNA showed that the melting peak for D. suweonensis was 76.4±0.06°C, whereas that of D. japonicus was 75.0±0.05°C. The differential melt curve plot further showed a distinct difference between them. We also carried out a pilot test for the application of HRM analysis based on immersing D. suweonensis in distilled water for 30 min to generate artificial environmental DNA (eDNA). The results showed 1.10-1.31°C differences in the melting peaks between the two tree frog samples. Therefore, this HRM analysis is rapid and accurate in identifying two tree frogs not only using their genomic DNA but also using highly non-invasive eDNA.
        4,000원
        5.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The CoCrFeMnNi high-entropy alloy (HEA), which is the most widely known HEA with a single facecentered cubic structure, has attracted significant academic attention over the past decade owing to its outstanding multifunctional performance. Recent studies have suggested that CoCrFeMnNi-type HEAs exhibit excellent printability for selective laser melting (SLM) under a wide range of process conditions. Moreover, it has been suggested that SLM can not only provide great topological freedom of design but also exhibit excellent mechanical properties by overcoming the strength–ductility trade-off via producing a hierarchical heterogeneous microstructure. In this regard, the SLM-processed CoCrFeMnNi HEA has been extensively studied to comprehensively understand the mechanisms of microstructural evolution and resulting changes in mechanical properties. In this review, recent studies on CoCrFeMnNi-type HEAs produced using SLM are discussed with respect to process-induced microstructural evolution and the relationship between hierarchical heterogeneous microstructure and mechanical properties.
        5,500원
        6.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Zintl phase Mg3Sb2 is a promising thermoelectric material in medium to high temperature range due to its low band gap energy and characteristic electron-crystal phonon-glass behavior. P-type Mg3Sb2 has conventionally exhibited lower thermoelectric properties compared to its n-type counterparts, which have poor electrical conductivity. To address these problems, a small amount of Sn doping was considered in this alloy system. P-type Mg3Sb2 was synthesized by controlled melting, pulverizing, and subsequent vacuum hot pressing (VHP) method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate phases and microstructure development during the process. Single phase Mg3Sb2 was successfully formed when 16 at.% of Mg was excessively added to the system. Nominal compositions of Mg3.8Sb2-xSnx (0 ≤ x ≤ 0.008) were considered in this study. Thermoelectric properties were evaluated in terms of Seebeck coefficient, electrical conductivity, and thermal conductivity. A peak ZT value ≈ 0.32 was found for the specimen Mg3.8Sb1.994Sn0.006 at 873 K, showing an improved ZT value compared to intrinsic one. Transport properties were also evaluated and discussed.
        4,000원
        7.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the effect of process stopping and restarting on the microstructure and local nanoindentation properties of 316L stainless steel manufactured via selective laser melting (SLM). We find that stopping the SLM process midway, exposing the substrate to air having an oxygen concentration of 22% or more for 12 h, and subsequently restarting the process, makes little difference to the density of the restarted area (~ 99.8%) as compared to the previously melted area of the substrate below. While the microstructure and pore distribution near the stop/restart area changes, this modified process does not induce the development of unusual features, such as an inhomogeneous microstructure or irregular pore distribution in the substrate. An analysis of the stiffness and hardness values of the nano-indented steel also reveals very little change at the joint of the stop/restart area. Further, we discuss the possible and effective follow-up actions of stopping and subsequently restarting the SLM process.
        4,000원
        8.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ti-6Al-4V alloy has a wide range of applications, ranging from turbine blades that require smooth surfaces for aerodynamic purposes to biomedical implants, where a certain surface roughness promotes biomedical compatibility. Therefore, it would be advantageous if the high volumetric density is maintained while controlling the surface roughness during the LPBF of Ti-6Al-4V. In this study, the volumetric energy density is varied by independently changing the laser power and scan speed to document the changes in the relative sample density and surface roughness. The results where the energy density is similar but the process parameters are different are compared. For comparable energy density but higher laser power and scan speed, the relative density remained similar at approximately 99%. However, the surface roughness varies, and the maximum increase rate is approximately 172%. To investigate the cause of the increased surface roughness, a nonlinear finite element heat transfer analysis is performed to compare the maximum temperature, cooling rate, and lifetime of the melt pool with different process parameters.
        4,000원
        10.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, an AISI 316 L alloy was manufactured using a selective laser melting (SLM) process. The tensile and impact toughness properties of the SLM AISI 316 L alloy were examined. In addition, stress relieving heat treatment (650oC / 2 h) was performed on the as-built SLM alloy to investigate the effects of heat treatment on the mechanical properties. In the as-built SLM AISI 316 L alloy, cellular dendrite and molten pool structures were observed. Although the molten pool did not disappear following heat treatment, EBSD KAM analytical results confirmed that the fractions of the low- and high-angle boundaries decreased and increased, respectively. As the heat treatment was performed, the yield strength decreased, but the tensile strength and elongation increased only slightly. Impact toughness results revealed that the impact energy increased by 33.5% when heat treatment was applied. The deformation behavior of the SLM AISI 316 L alloy was also examined in relation to the microstructure through analyses of the tensile and impact fracture surfaces.
        4,000원
        11.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근에 감에서 떫은맛을 조절하는 AST에 연관된 지역에서 분자 표지들이 개발되었다. 이중에서 sequence characterized amplified region (SCAR) marker는 5R region에 인접한 지역에서 개발되었다. 하지만 이 SCAR마커는 분석 방법이 다소 복잡하고 해석이 어려워 많은 교배실생을 분석할 경우에는 적합하지 않다. 우리는 5R 지역의 sequences에 기반하여 high-resolution melting (HRM)-based 분자 표지를 개발하였다. 개발된 HRM preimer set을 8개 품종의 단감 및 떫은감에 대해 적용한 결과 단감 품종에서는 직선을 나타낸 반면 떫은감 품종에서는 다양한 크기의 곡선으로 나타나서 차이를 확인할 수 있었다. 결과적으로 이번 연구에서 개발된 HRM primer set은 분자 표지를 활용한 감 품종 육성 연구에 매우 효율적으 로 활용될 수 있을 것으로 기대된다.
        4,000원
        12.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The intensiveness of highway management has increased owing to the growth in the number of vehicles and the rapid climate change. The disadvantages produced by these factors can affect management time and cost. Serious traffic accidents and traffic jam may be experienced when snow fall accumulates on highway surfaces and the friction between tires and pavements is lower than that in the general state, in a non-management condition. Such conditions need intensive management. In this regard, one of the spread methods used for the melting material is pre-wetted salt (PWS), which is the frequently used method in South Korea. In the PWS method, the solid material with CaCl2 is mixed with water in 30% concentration and then finally mixed with NaCl before application to pavements. The chloride-type melting material not only is cheaper, but also has a high melting property than the others. It can shorten the pavement or structure life by deterioration and corrosion. This melting material can affect the flora near the highways; hence, an eco-friendly de-icing agent must be utilized considering the environmental effect. METHODS : The Kalman filter algorithm (KFA) was utilized herein to develop optimization models using the performed test data. The KFA, which was developed from recursive filter algorithms, such as the low- and high-pass filters, applies a weighting filter to the Kalman filter. The algorithm has the property of utilizing the filter and updated estimations. In this regard, melting tests were performed for the real applicative utilization of de-icing agents. The KFA was also applied to reduce the error rates and optimize the relationships between the test data and the predictions. RESULTS: Comparing the measurements performed, the error was reduced by 1.69 g when the KFA was applied. Moreover, the error can be optimized to approximately 91.4% compared to the test errors. The prediction data had over 85% tendency in the test measurement, showing that the KFA application can reduce the error and increase the tendency. By comparison, the agent with CaCl2 showed the best ice melting performance within 10 min without surface temperature. However, the PWS with a 25% concentration indicated the best water melting performance from start to end of the test time, implying that this is a powerful agent in terms of performance. CONCLUSIONS : The melting test is an artificial test method; therefore, it can generate a huge error from the test. The error and the tendency can be controlled by tracking the measurement error and the white noise matrix using the KFA. A further research will be performed to track the measurement error and the white noise matrix. Other optimization methods will also be applied to reduce the experimental error.
        4,000원
        13.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Additively manufactured metallic components contain high surface roughness values, which lead to unsatisfactory high cycle fatigue resistance. In this study, high cycle fatigue properties of selective laser melted Ti-6Al- 4V alloy are investigated and the effect of dry-electropolishing, which does not cause weight loss, on the fatigue resistance is also examined. To reduce the internal defect in the as-built Ti-6Al-4V, first, hot isostatic pressing (HIP) is conducted. Then, to improve the mechanical properties, solution treatment and aging are also implemented. Selective laser melting (SLM)-built Ti64 shows a primary α and secondary α+β lamellar structure. The sizes of secondary α and β are approximately 2 μm and 100 nm, respectively. On the other hand, surface roughness Ra values of before and after dry-electropolishing are 6.21 μm and 3.15 μm, respectively. This means that dry-electropolishing is effective in decreasing the surface roughness of selective laser melted Ti-6Al-4V alloy. The comparison of high cycle fatigue properties between before and after dry-electropolished samples shows that reduced surface roughness improves the fatigue limit from 150 MPa to 170 MPa. Correlations between surface roughness and high cycle fatigue properties are also discussed based on these findings.
        4,000원
        14.
        2019.11 KCI 등재 SCOPUS 구독 인증기관·개인회원 무료
        In this study, the glass melting properties are evaluated to examine the possibility of using refused coal ore as replacement for ceramic materials. To fabricate the glass, refused coal ore with calcium carbonate and sodium carbonate in it (which are added as supplementary materials) is put into an alumina crucible, melted at 1,200 ~ 1,500℃ for 1 hr, and then annealed at 600℃ for 2 hrs. We fabricate a black colored glass. The properties of the glass are measured by XRD (X-ray diffractometry) and TG-DTA (thermogravimetry-differential thermal analysis). Glass samples manufactured at more than 1,300℃ with more than 60 % of refused coal ore are found by XRD to be non-crystalline in nature. In the case of the glass sample with 40 % of refused coal ore, from the sample melted at 1,200℃, a sodium aluminum phosphate peak, a disodium calcium silicate peak, and an unknown peak are observed. On the other hand, in the sample melted at 1,300℃, only the sodium aluminum phosphate peak and unknown peak are observed. And, peak changes that affect crystallization of the glass according to melting temperature are found. Therefore, it is concluded that glass with refused coal ore has good melting conditions at more than 1,200℃ and so can be applied to the construction field for materials such as glass tile, foamed glass panels, etc.
        17.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, Al-Si-Mg alloys are additively manufactured using a selective laser melting (SLM) process from AlSi10Mg powders prepared from a gas-atomization process. The processing parameters such as laser scan speed and laser power are investigated for 3D printing of Al-Si-Mg alloys. The laser scan speeds vary from 100 to 2000 mm/ s at the laser power of 180 and 270W, respectively, to achieve optimized densification of the Al-Si-Mg alloy. It is observed that the relative density of the Al-Si-Mg alloy reaches a peak value of 99% at 1600 mm/s for 180W and at 2000 mm/s for 270W. The surface morphologies of the both Al-Si-Mg alloy samples at these conditions show significantly reduced porosities compared to those of other samples. The increase in hardness of as-built Al-Si-Mg alloy with increasing scan speed and laser power is analyzed due to high relative density. Furthermore, it was found that cooling conditions after the heat-treatment for homogenization results in the change of dispersion status of Si phases in the Al-Si matrix but also affects tensile behaviors of Al-Si-Mg alloys. These results indicate that combination between SLM processing parameters and post-heat treatment should be considered a key factor to achieve optimized Al-Si alloy performance.
        4,000원
        18.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Selective laser melting (SLM), a type of additive manufacturing (AM) technology, leads a global manufacturing trend by enabling the design of geometrically complex products with topology optimization for optimized performance. Using this method, three-dimensional (3D) computer-aided design (CAD) data components can be built up directly in a layer-by-layer fashion using a high-energy laser beam for the selective melting and rapid solidification of thin layers of metallic powders. Although there are considerable expectations that this novel process will overcome many traditional manufacturing process limits, some issues still exist in applying the SLM process to diverse metallic materials, particularly regarding the formation of porosity. This is a major processing-induced phenomenon, and frequently observed in almost all SLM-processed metallic components. In this study, we investigate the mechanical anisotropy of SLM-produced 316L stainless steel based on microstructural factors and highly-oriented porosity. Tensile tests are performed to investigate the microstructure and porosity effects on mechanical anisotropy in terms of both strength and ductility.
        4,000원
        19.
        2018.05 구독 인증기관·개인회원 무료
        In order to investigate ice melting properties of road deicers with chemical types, theoretical comparison using performance index (PI) [1] and experimental analysis were carried out. In the theoretical comparison using PI, differences in melting ice performance properties were shown with chemical types and temperature ranges. Sodium chloride (NaCl) showed the best melting performance at -1.5~-3.5℃, but lower PI than other chemicals (CaCl2 and MgCl2) at lower temperature than -4.5℃. Calcium chloride (CaCl2) showed the best PI at lower than - 6.5℃, and at higher than -1.5℃, but the lowest PI at -1.5~-4.5℃. Magnesium chloride (MgCl2) showed the best performance at -3.5~-6.5℃, but the lowest PI at higher temperature than -1.5℃. PI can be regarded as a representative index for melting ice performance of liquid deicer, however, it is not enough to evaluate that of solid deicer, because the effect of heat of solution is not considered in PI. In the experimental analysis, comparison for ice melting performance between solid and liquid deicers was mainly carried out. Solid calcium chloride showed very good persistency and quick-acting property by the effect of heat of solution. Solid sodium chloride has no quick-acting property, but very good persistency at a mild temperature (-3℃), whereas ice melting performance declined greatly at severely low temperature (-11℃). Liquid sodium chloride and calcium chloride showed somewhat good quick-acting property, but inferior persistency to solid ones.
        20.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, two types of SKD61 tool-steel samples are built by a selective laser melting (SLM) process using the different laser scan speeds. The characteristics of two kinds of SKD61 tool-steel powders used in the SLM process are evaluated. Commercial SKD61 tool-steel power has a flowability of 16.68 sec/50 g and its Hausner ratio is calculated to be 1.25 by apparent and tapped density. Also, the fabricated SKD61 tool steel powder fabricated by a gas atomization process has a flowability of 21.3 sec/50 g and its Hausner ratio is calculated to be 1.18. Therefore, we confirmed that the two powders used in this study have excellent flowability. Samples are fabricated to measure mechanical properties. The highest densities of the SKD61 tool-steel samples, fabricated under the same conditions, are 7.734 g/cm³ (using commercial SKD61 powder) and 7.652 g/cm3 (using fabricated SKD61 powder), measured with Archimedes method. Hardness is measured by Rockwell hardness testing equipment 5 times and the highest hardnesses of the samples are 54.56 HRC (commercial powder) and 52.62 HRC (fabricated powder). Also, the measured tensile strengths are approximately 1,721 MPa (commercial SKD61 powder) and 1,552 MPa (fabricated SKD61 powder), respectively.
        4,000원
        1 2 3 4 5