The MIM technology is an alternative process for fabricating near net shape components that usually uses gas atomised powders with small size (< 20 μm) and spherical shape. In this work, the possibility of changing partially or totally spherical powder by an irregular and/or coarse one that is cheaper than the former was investigated. In this way, different bronze 90/10 components were fabricated by mixing three different types of powder, gas and water atomised with different particle sizes, in order to evaluate how the particle shape and size affect the MIM process.
In this present investigation, Metal Injection Moulding (MIM) of M2 High Speed Steel (HSS) parts using a wax-High Density Polyethylene (HDPE) binder is shown. The elimination of organic binder was carried out by thermal debinding under inert atmosphere. In order to keep carbon in the sample that could improve the sintering process, incomplete debinding was performed between 450 and . The specimens were sintered at temperatures between 1210 and in high vacuum atmosphere, obtaining the 98% of the theoretical density. In the samples with higher residual carbon content, the sintering window was extended up to 20 degrees and the optimum temperature was lower.