Ceramic Injection Moulding (CIM) technology has been successfully used for the fabrication of Mn-Zn Ferrite part. The binder was composed by polypropylene and paraffin wax. The optimal powder loading (58% vol.) was determined by means of rheological measurements. Threedifferent parts, toroids, bending and tensile probes were injected. Thermal and solvent-thermal debinding was designed based on DSC and TGA studies of the binder. The time of the debinding cycle was reduced using n-heptane to dissolve previously the paraffin wax. Final properties have been determined and compared with uniaxial pressure parts values. The densities obtained were slightly higher than those of uniaxial pressure parts and the magnetic properties presented similar values.
Based on the comparison of structures and properties of the HS6-5-2 high speed steels made with the powder injection moulding method, pressureless forming, compacting and sintering, and commercial steels made with the ASEA-STORA method, fine carbides spread evenly in the steel matrix were found in the structure of all tested high-speed steels in the sintered state. The steels made with the pressureless forming method are characteristic of the lowest sintering temperature and the highest density, resulting from the high carbon concentration coming from the binding agent degradation.
In this communication the development of a new metal injection moulding (MIM) system for duplex stainless steels is presented. The metal powders were prepared by premixing 316L and 430L stainless steels gas atomised powders in a ratio of 50:50. The binder used to prepare the feedstock was composed by HDPE and paraffin wax. Torque measurements of the mixture indicated that the maximum amount of metal was 68 vol%. The polymeric part was driven off by thermal debinding and the sintering was performed in low vacuum. The final densities were close to the theoretical ones.
In this present investigation, Metal Injection Moulding (MIM) of M2 High Speed Steel (HSS) parts using a wax-High Density Polyethylene (HDPE) binder is shown. The elimination of organic binder was carried out by thermal debinding under inert atmosphere. In order to keep carbon in the sample that could improve the sintering process, incomplete debinding was performed between 450 and . The specimens were sintered at temperatures between 1210 and in high vacuum atmosphere, obtaining the 98% of the theoretical density. In the samples with higher residual carbon content, the sintering window was extended up to 20 degrees and the optimum temperature was lower.
In this experimental work, the development of a multicomponent binder system based on high density polyethylene (HDPE) and paraffin wax for Powder Injection Molding of Alumina parts was carried out. The optimum composition of the injection mixture was established through mixing torque measurements and a rheological study. The maximum powder loading was 58 vol%. The miscibility of organic components and the optimum injection temperature was evaluated by thermal characterization of binder and feedstock. The thermal debinding cycle was developed on the basis of thermogravimetrical analysis of the binder. After sintering the densities achieved were closed to 98% of the theoretical one.