검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 22

        2.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To investigate the effect of the catalyst and metal–support interaction on the methane decomposition behavior and physical properties of the produced carbon, catalytic decomposition of methane (CDM) was studied using Ni/SiO2 catalysts with different metal–support interactions (synthesized based on the presence or absence of urea). During catalyst synthesis, the addition of urea led to uniform and stable precipitation of the Ni metal precursor on the SiO2 support to produce Ni-phyllosilicates that enhanced the metal–support interaction. The resulting catalyst upon reduction showed the formation of uniform Ni0 particles (< 10 nm) that were smaller than those of a catalyst prepared using a conventional impregnation method (~ 80 nm). The growth mechanisms of methane-decomposition-derived carbon nanotubes was base growth or tip growth according to the metal–support interaction of the catalysts synthesized with and without urea, respectively. As a result, the catalyst with Ni-phyllosilicates resulting from the addition of urea induced highly dispersed and strongly interacting Ni0 active sites and produced carbon nanotubes with a small and uniform diameter via the base-growth mechanism. Considering the results, such a Ni-phyllosilicate-based catalyst are expected to be suitable for industrial base grown carbon nanotube production and application since as-synthesized carbon nanotubes can be easily harvested and the catalyst can be regenerated without being consumed during carbon nanotube extraction process.
        4,300원
        3.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ammonia is considered a promising hydrogen carrier due to its high hydrogen density and liquefaction temperature. Considering that the energy efficiency generally decreases as chemical conversion is repeated, it is more efficient to directly use ammonia as a fuel for fuel cells. However, catalysts in direct ammonia fuel cells have the critical issues of sluggish ammonia oxidation reaction (AOR) rate and poisoning of reaction intermediates. In particular, the use of precious metal as cathodic catalysts has been limited due to ammonia crossover and poisoning. In this study, we introduce Fe-based single-atom catalysts with selective activity for the oxygen reduction reaction (ORR) even in the presence of ammonia. As the Fe content increased, the single-atom structure of the catalysts changed into Fe nanoparticles or carbides. Among our Fe–N–C catalysts, FeNC-50 with a Fe loading amount of 0.34 wt% showed the highest ORR performance regardless of the ammonia concentration. In particular, the difference in activity between the catalysts increased as the concentration increased. The FeNC-50 catalyst showed remarkable stability after 1000 cycles. Therefore, we believe that single-atom dispersion is an important factor in the development of stable non-precious catalysts with high activity and inactivity for the ORR and AOR, respectively.
        4,000원
        4.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metal–organic frameworks (MOFs) are widely used as supports for single-atom catalysts (SACs) owing to their high specific surface area, porosity, and ordered metal–ligand structure. Their activity can be increased by increasing the number of electrochemically accessible active sites via the formation of atomically dispersed metal catalysts (M–Nx) that coordinate with nitrogen atoms on the MOF. Herein, we introduce the relationship between the size of the MOF as a starting material and the catalytic activity for the oxygen reduction reaction in alkaline media. The morphology and features of the MOFs are critically dependent on their size. Remarkably, cage-like MOFs below 33 nm are converted into collapsed structures and are connected between each MOF, even carbon fiber- or tube-like features, after carbonization. SACs derived from medium-sized MOFs exhibit excellent activity and are comparable to commercial Pt/C catalysts owing to their porous structure. Therefore, we believed that controlling the size of MOFs containing active atoms is an effective method of modulating the morphological properties of the support and even the number of active sites that are closely related to the activity.
        4,000원
        5.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ni–Cr–Al metal-foam-supported catalysts for steam methane reforming (SMR) are manufactured by applying a catalytic Ni/Al2O3 sol–gel coating to powder alloyed metallic foam. The structure, microstructure, mechanical stability, and hydrogen yield efficiency of the obtained catalysts are evaluated. The structural and microstructural characteristics show that the catalyst is well coated on the open-pore Ni–Cr–Al foam without cracks or spallation. The measured compressive yield strengths are 2–3 MPa at room temperature and 1.5–2.2 MPa at 750oC regardless of sample size. The specimens exhibit a weight loss of up to 9–10% at elevated temperature owing to the spallation of the Ni/Al2O3 catalyst. However, the metal-foam-supported catalyst appears to have higher mechanical stability than ceramic pellet catalysts. In SMR simulations tests, a methane conversion ratio of up to 96% is obtained with a high hydrogen yield efficiency of 82%.
        4,000원
        7.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon materials with tailorable structures and superior properties have great potential applications in environmental protection, energy conversion, and catalysis. Plant biomass as abundant and green non-toxic raw materials has been considered as good precursors for synthesizing heteroatom-doped carbon materials. However, few studies have been reported on the different natures of carbon materials derived from different parts of the same plant biomass. In this study, we prepared carbon materials from the petioles and blades of apricot leaves by direct pyrolysis without additives. Detailed characterizations indicate that these two carbon materials are similar in element composition and graphitization degree, but differ greatly in surface area and pore volume. These differences can be attributed to the different contents of inorganic salts, vascular bundles, and proteins in petioles and blades. When used as catalysts for the oxidation of ethylbenzene, the petiole-derived carbon shows better catalytic performance than the blades derived carbon due to its high surface area, large average pore size, and doped nitrogen atoms. Furthermore, the carbon catalysts derived from the petioles and blades of poplar leaves and parasol tree leaves show the same difference in catalytic reaction, implying that the above-mentioned conclusion is rather universal, which can provide reference for the synthesis of carbon materials from leaves.
        4,000원
        8.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is necessary to fabricate uniformly dispersed nanoscale catalyst materials with high activity and long-term stability for polymer electrolyte membrane fuel cells with excellent electrochemical characteristics of the oxygen reduction reaction and hydrogen oxidation reaction. Platinum is known as the best noble metal catalyst for polymer electrolyte membrane fuel cells because of its excellent catalytic activity. However, given that Pt is expensive, considerable efforts have been made to reduce the amount of Pt loading for both anode and cathode catalysts. Meanwhile, the atomic layer deposition (ALD) method shows excellent uniformity and precise particle size controllability over the three-dimensional structure. The research progress on noble metal ALD, such as Pt, Ru, Pd, and various metal alloys, is presented in this review. ALD technology enables the development of polymer electrolyte membrane fuel cells with excellent reactivity and durability.
        4,000원
        10.
        2018.11 구독 인증기관·개인회원 무료
        The present polymer have a conjugated polymer backbone system with the designed substituents. The photoluminescence peak of polymer was observed at 525nm, which is corresponded to the photon energy of 2.36 eV and the band gap of poly(EBA) was 2.38 eV. The cyclovoltamograms of the polymer exhibited the irreversible electrochemical behaviors. It was found that the kinetics of the redox process of this conjugated polymer might be mainly controlled by the diffusion process from the experiment of the oxidation current density of polymer versus the scan rate.
        12.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        금속 산화물과 혼합한 Pt-Sn/Al2O3 촉매의 프로판 탈수소 반응 성능의 향상 가능성에 대해 서 연구하였다. 금속 산화물로서 Cu-Mn/γ-Al2O3, Ni-Mn/γ-Al2O3, Cu/α-Al2O3를 제조하여 Pt-Sn/Al2O3 촉매와 혼합하고, 프로판 탈수소 반응 성능을 측정하였다. 이 결과들을 불활성 물질인 glass bead를 혼합한 Pt-Sn/Al2O3 촉매를 기준샘플로 삼아 비교하였다. 촉매와 금속산화물을 환원처리 하지 않고 반응 실험한 경우, 576.5℃에서 기준샘플의 전환율 8% 대비, Cu-Mn/γ-Al2O3를 혼합한 Pt-Sn/Al2O3 촉매가 14.9%의 높은 전환율과 96.8%의 선택도를 보였다. 촉매와 금속산화물을 환원 처 리하여 반응활성을 측정한 경우, Cu/α-Al2O3과 Pt-Sn/Al2O3의 혼합촉매가 기준샘플대비 초기에 높은 수율을 보였다. 그러나, 촉매를 환원 처리한 경우 전반적으로 전환율 상승이 크지 않았고, 이것으로 Cu-Mn/γ-Al2O3의 격자산소가 탈수소반응의 전환율 증가 영향을 주었음을 알 수 있었다.
        4,000원
        13.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cu-Mn과 Cu-Zn 촉매를 침전제로 다르게 하거나, 금속의 몰비율, 소성온도를 다르게 하여 공침법으로 제조하였고 CO산화반응을 수행하여 혼합산화물 촉매에서 Cu, Mn과 Zn의 영향 및 소성온 도가 미치는 영향을 조사하였다. 촉매의 물리·화학적 특성을 알아보기 위하여 XRD, N2 흡착 및 SEM 의 분석을 수행하였다. Na2CO3로 침전시켜 270℃로 소성하여 제조한 2Cu-1Mn 산화물 촉매가 저온에 서 CO 산화반응 활성이 가장 좋았으며 2Cu-1Mn 산화물 촉매는 43 m2/g으로 가장 높은 비표면적과 촉매 활성을 나타내었다. XRD로 촉매의 결정구조를 분석하였을 때 Cu0.5Mn2.5O4의 결정구조를 갖는 촉 매는 낮은 활성을 보였다. 270℃에서 소성한 촉매가 좋은 활성을 나타냈으며 Pt 촉매와 비교하여도 저 온에서 CO산화반응이 더욱 우수함을 알 수 있었다.
        4,000원
        14.
        2014.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        NiO catalysts were successfully coated onto FeCrAl metal alloy foam as a catalyst support via a dip-coating method. To demonstrate the optimum amount of NiO catalyst on the FeCrAl metal alloy foam, the molar concentration of the Ni precursor in a coating solution was controlled, with five different amounts of 0.4 M, 0.6 M, 0.8 M, 1.0 M, and 1.2 M for a dip-coating process. The structural, morphological, and chemical bonding properties of the NiO-catalyst-coated FeCrAl metal alloy foam samples were assessed by means of field-emission scanning electron microscopy(FESEM), scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). In particular, when the FeCrAl metal alloy foam samples were coated using a coating solution with a 0.8 M Ni precursor, well-dispersed NiO catalysts on the FeCrAl metal alloy foam compared to the other samples were confirmed. Also, the XPS results exhibited the chemical bonding states of the NiO phases and the FeCrAl metal alloy foam. The results showed that a dip-coating method is one of best ways to coat well-dispersed NiO catalysts onto FeCrAl metal alloy foam.
        4,000원
        15.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Esterification reaction between succinic acid[SA] and 1,4-butanediol [BD was kinetically investigated in the presence of organic metal catalysts (alkyl-silver oxide(ASO),CAT 100E) at 150~190℃. The reaction rates measured by the amount of distilled water from the reaction vessel. The esterification reaction was carried out under the first order kinetics with respect to the concentration of reactants and catalyst, respectively. The overall reaction order was 2nd. From the examination of relationship between apparent reaction rate constants and reciprocal absolute temperature, the activation energy has been calculate as 146.70 kJ/mol with ASO catalyst and 43.04 kJ/mol with CAT 100E catalyst.
        4,000원
        16.
        2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electrochemical deposition of Pt nanoparticles on carbon nanotubes (CNTs) supports and their catalytic activities formethanol electro-oxidation were investigated. Pt catalysts of 4~12nm average crystalline size were grown on supports bypotential cycling methods. Electro-plating of 12min time by potential cycling method was sufficient to obtain smallcrystalline size 4.5nm particles, showing a good electrochemical activity. The catalysts’ loading contents were enhanced byincreasing the deposition time. The crystalline sizes and morphology of the Pt/support catalysts were evaluated using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The electrochemical behaviors of the Pt/support catalystswere investigated according to their characteristic current-potential curves in a methanol solution. In the result, theelectrochemical activity increased with increased plating time, reaching the maximum at 12min, and then decreased. Theenhanced electroactivity for catalysts was correlated to the crystalline size and dispersion state of the catalysts.
        3,000원
        17.
        2000.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The selective catalytic reduction(SCR) of nitric oxide by ethane in the presence of oxygen was investigated on Cu-ZSM-5, Co-ZSM-5 and Ga-ZSM-5 catalysts over a range of 400, 450 and 500℃. The catalysts were prepared by ion-exchange method. The composition of the reactant gases were 1000 ppm of NO, 1000 ppm of C2H6 and 2.5% of O2, and the reaction was conducted in a fixed-bed reactor at 1 atm. For the 20wt% Co-ZSM-5(50) catalyst, the NO conversion reached up to 100%, while the C2H6 conversion and the CO selectivity were about 50% and 25%, respectively, at 450℃. For the 20wt% Cu-ZSM-5(50) catalyst, the NO conversion and the C2H6 conversion were about 80% and 100%, respectively, but there was no CO produced. The metal ion-exchanged ZSM-5 catalysts exhibited a tendency to increase the NO conversion with the Si/Al ratio of the ZSM-5, that is, NO conversion was inversely proportional to the acidity of the catalysts. But, the effect of the acidity on NO conversion was not so large. From the XRD results of the catalysts before and after SCR reaction it was found that there was no structural change.
        4,000원
        18.
        2015.01 KCI 등재 서비스 종료(열람 제한)
        The effect of the metal oxide catalyst in the dimerization of waste vegetable oil was investigated. The high efficiency and recyclability has allowed different metal oxides to be used as catalysts in numerous synthetic reactions. Herein, clay, aluminum, titanium, calcium, magnesium and silicon oxide micro/nanoparticles are used in a Diels-Alder reaction to catalyze the production of the dimer acids. The metal oxides assist the electron transfers during cyclization to produce the desired product. Liquid chromatography mass spectroscopy (LC-MS) and gel permeation chromatography (GPC) were used to verify the production of dimer acids. For the confirmation of cyclization, compounds were analyzed using the nuclear magnetic resonance (NMR) spectroscopy. From the analysis, silylated or pristine clay showed its effectiveness as a catalyst in dimerization. Furthermore, alumina and alumina/silica composite showed successful performance in the reaction to yield cyclic dimer acids. These result suggested that metal oxides and montmorillonite might be used in synthesis of dimer acids for the recycle of waste vegetable oils.
        19.
        2013.11 서비스 종료(열람 제한)
        Metal oxide promoted ceria-zirconia (Ce/Zr = 6/4) catalysts was applied to deoxygenation (DO) of oleic acid in batch mode at 300℃ under 1 bar of 20% H2/N2 condition. Metal oxide promoted ceria-zirconia catalysts were prepared by a co-precipitation method. As a result, Ni-Ce0.6Zr0.4O2 catalyst exhibited much higher oleic acid conversion, selectivity to C9 ~ C17 compounds (diesel fuel range), and oxygen removal efficiency than the others. This is due to the presence of free NiO species, synergy effect of nickel and Ce0.6Zr0.4O2, highest BET surface area, and the strong metal to support interaction (SMSI).
        20.
        2013.08 KCI 등재 서비스 종료(열람 제한)
        Alumina-supported catalysts containing different transition metals such as Cu, Cr, Mn, Zn, Co, W were investigated for their activity in the selective oxidation of toluene. Catalytic oxidation of toluene was investigated at atmospheric pressure in a fixed bed flow reactor system over transition metals with Al2O3 catalyst. The result showed the order of catalytic activities for the complete oxidation of toluene was Mn > Cu> Cr> Co> W> Zn for 5wt.% transition metals/Al2O3. Mn/Al2O3 catalysts containing different amount of Mn were characterized by X-ray diffraction spectroscopy for decision of loading amount of metal to alumina. 5 wt.%Mn/Al2O3 catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289℃.
        1 2