검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Synthesis of high-purity magnesium hydroxide using dolomite and bittern is important for use in various applications. We synthesized magnesium hydroxide using bittern and dolomite, which are domestic resources. In Bittern, there is a high concentration of Mg2+ ions, but the impurity Ca2+ ion content is also significant, requiring a purification process to remove it. There are two main methods for this purification. Firstly, there is a separation method that utilizes the difference in solubility between Mg2+ ions and Ca2+ ions by using sulfuric acid on dolomite. Adding MgSO4 solution from dolomite to Bittern removes Ca2+ ions as CaSO4. This process simultaneously purifies Ca impurities and increases the Mg/Ca ratio by adding extra Mg2+ ions. In this study, purified bittern was obtained by using dolomite and sulfuric acid to extract MgSO4, which was then used to purify Ca2+ ions. High-purity Mg(OH)2 was synthesized by optimizing the NaOH and NH4OH ratio as an alkaline precipitant. Mg(OH)2 synthesis technology made by effectively removing Ca ions from dolomite and bittern can contribute to domestic pilot production.
        4,000원
        2.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnesium hydroxide sulfate hydrate (MHSH) whiskers were synthesized via a hydrothermal reaction by using MgO as the reactant as well as the acid solution. The effects of the H2SO4 amount and reaction time at the same temperature were studied. In general, MHSH whiskers were prepared using MgSO4 in aqueous ammonia. In this work, to reduce the formation of impurities and increase the purity of MHSH, we employed a synthesis technique that did not require the addition of a basic solution. Furthermore, the pH value, which was controlled by the H2SO4 amount, acted as an important factor for the formation of high-purity MHSH. MgO was used as the raw material because it easily reacts in water and forms Mg+ and MgOH+ ions that bind with SO4 2- ions to produce MHSH. Their morphologies and structures were determined using X-ray diffraction (XRD) and scanning electron microscopy (SEM).
        4,000원
        3.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Magnesium hydroxide sulfate hydrate whiskers (, abbreviated 513 MHSH) were prepared using hydrothermal reaction with magnesium oxide (MgO) and magnesium sulfate () as the starting materials. The effects of the molar ratio of /MgO and amount of were studied. As a result, 513 MHSH whiskers co-existed with hexagonal plate at low concentration of . The molar ratio of /MgO was 7:1, uniform 513 MHSH whiskers were formed without impurity such as . Appropriate amount of has affected to formation of high quality MHSH. Their morphologies and structures were determined by powder X-ray diffraction (XRD) scanning electron microscopy (SEM) and thermo-gravimetric analyzer (TGA).
        4,000원
        4.
        2017.04 서비스 종료(열람 제한)
        This paper investigates the strength properties of ground granulated blast furnace slag(GGBFS) with magnesium sulfate(MgSO4). GGBFS was replaced with 1, 2, 3, 4, and 5% MgSO4 by weight. Mixtures of sodium hydroxide(NaOH) and sodium silicate(Na2SiO3) were used as the alkaline activator; a mixture of 5% NaOH and 5% Na2SiO3, and a mixture of 10% NaOH and 10% Na2SiO3 by slag weight. The added activators were dissolved in the water, and the weight ratio of water to slag was 0.45. This study was performed using compressive strength testing, ultrasonic pulse velocity(UPV), water absorption and X-ray diffraction(XRD). In this study, the strength of hardened samples decreases with increasing MgSO4 content. In addition, the water absorption of samples increases and UPV decreases, with the increase of MgSO4 content. Brucite, gypsum and M-S-H(magnesium silicate hydrate) are present in the XRD patterns of the hardened samples.
        5.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        This paper investigates the strength properties of ground granulated blast furnace slag(GGBFS) with magnesium sulfate(MgSO4). GGBFS was replaced with 1, 2, 3, 4, and 5% MgSO4 by weight. Mixtures of sodium hydroxide(NaOH) and sodium silicate(Na2SiO3) were used as the alkaline activator; a mixture of 5% NaOH and 5% Na2SiO3, and a mixture of 10% NaOH and 10% Na2SiO3 by slag weight. The added activators were dissolved in the water, and the weight ratio of water to slag was 0.45. This study was performed using compressive strength testing, ultrasonic pulse velocity(UPV), water absorption and X-ray diffraction(XRD). In this study, the strength of hardened samples decreases with increasing MgSO4 content. In addition, the water absorption of samples increases and UPV decreases, with the increase of MgSO4 content. Brucite, gypsum and M-S-H(magnesium silicate hydrate) are present in the XRD patterns of the hardened samples.
        6.
        2008.09 KCI 등재 서비스 종료(열람 제한)
        적색장미의 변색방지 기술을 개발하고자 Al, AlK, Mg 및 CuSO4를 증류수에 0, 5, 10, 20 및 30%로 희석한 열탕(85∼90℃)에 장미 ‘카디날’ 꽃잎을 30초 동안 침지하여 건조한 후 자외선 조사에 따른 변색정도를 조사하였다. Al 용액 처리구는 a*값의 경우 5, 10% 처리구에서, b값은 20%처리구에서, △E*값은 30% 처리구에서 신선한 꽃과의 색차가 적었다. AlK 처리구는 5%와 30% 액에 처리시 신선한 꽃과의 헌트 a*, b* 및 △E*값의 차이가 적었다. Mg 처리구는 20% 및 30% 처리구에서 신선한 꽃과의 Hunter a*, b* 및 △E*값의 차이가 적었다. CuSO4 처리구는 5% 액에 처리시 신선한 꽃과의 Hunter a*, b*, △E*값 및 Munsell 표색계 H값의 차이가 적었다.