검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        1997.10 KCI 등재 서비스 종료(열람 제한)
        Microorganisms capable of degrading trichloroethylene(TCE) using phenol as a induction substrate were isolated from industrial effluents and soil. The strain MS-64K which had the highest biodegradability was identified as the genus Micrococcus. The optimal conditions of medium for the growth and biodegradation of trichloroethylene were observed as follows; the initial pH 7.0, trichloroethylene 1,000ppm as the carbon source, 0.2% (NH_4)_2SO_4 as the nitrogen source, respectively. Lag period and degradation time on optimal medium were shorter than those on isolation medium. Growth on the optimal medium was increased. Addition of 0.1% Triton X-100 increased the growth rate of Micrococcus sp. MS-64K, but degradation was equal to optimal medium. Trichloroethylene degradation by Micrococcus sp. MS-64K was shown to fit logarithmic model when the compound was added at initial concentration of 1,000ppm.
        2.
        1997.04 KCI 등재 서비스 종료(열람 제한)
        In order to find the most fitted biodegradation model, biodegradation kinetics model to the initial phenol and p-cresol concentrations were investigated and had been fitted by the linear regression. Bacteria capable of degrading p-cresol were isolated from soil by enrichment culture technique. Among them, strain M1 capable of degrading p-cresol has also degraded phenol and was identified as the genus Micrococcus from the results from of taxonomical studies. The optimal conditions for the biodegradation of phenol and pcresol by Micrococcus sp. M1 were NH_4NO_3 0.05%, pH 7.0, 30℃, respectively, and medium volume 100㎖/250㎖ shaking flask. Micrococcus sp. M1 was able to grow on phenol concentration up to 14mM and p-cresol concentration up to 8mM. With increasing substrate concentration, the lag period increased, but the maximum specific growth rates decreased. The yield coefficient decreased with increasing substrate concentration. The biodegradation kinetics of phenol and p-cresol were best described by Monod with growth model for every experimented concentration. In cultivation of mixed substrate, p-cresol was degraded first and phenol was second. This result implies that p-cresol and phenol was not degraded simultaneously.