A pump-type eDNA filtering system that can control voltage and hydraulic pressure respectively has been developed, and applied a filter case that can filter out without damaging the filter. The filtering performance of the developed system was evaluated by comparing the eDNA concentration with the conventional vacuum-pressured filtering method at the catchment conduit intake reservoir. The developed system was divided into a voltage control (manual pump system) method and a pressure control (automatic pump system) method, and the pressure was measured during filtering and the pressure change of each system was compared. The voltage control method started with 65 [KPa] at the beginning of the filtering, and as the filtering time elapsed, the amount of filtrate accumulated in the filter increased, so the pressure gradually increased. As a result of controlling the pressure control method to maintain a constant pressure according to the designed algorithm, there was a difference in the width of the hydraulic pressure fluctuation during the filtering process according to the feedback time of the hydraulic pressure sensor, and it was confirmed that the pressure was converged to the target pressure. The filtering performance of the developed system was confirmed by measuring the eDNA concentration and comparing the voltage control method and the hydraulic control method with the control group. The voltage control method obtained similar results to the control group, but the hydraulic control method showed lower results than the control group. It is considered that the low eDNA concentration in the hydraulic control method is due to the large pressure deviation during filtering and maintaining a constant pressure during the filtering process. Therefore, rather than maintaining a constant pressure during filtering, it was confirmed that a voltage control method in which the pressure is gradually increased as the filtrate increases with the lapse of filtering time is suitable for collecting eDNA. As a result of comparing the average concentration of eDNA in lentic zone and lotic zone as a control group, it was found to be 96.2 [ng μL-1] and 88.4 [ng μL-1l], respectively. The result of comparing the average concentration of eDNA by the pump method was also high in the lentic zone sample as 90.7 [ng μL-1] and 74.8 [ng μL-1] in the lentic zone and the lotic zone, respectively. The high eDNA concentration in the lentic zone is thought to be due to the influence of microorganisms including the remaining eDNA.
Environmental problems such as global warming become social issues today. It is reported that increasing energy consumption has affected on these environmental issues. Buildings deploys 40 percent of the raw materials in the world while at the same time they emit over 35 percent of the total CO2, so that it utilize over 50 percent of the whole energy in the world. At this point, energy saving though effective building control may eventually bring social, environmental and economical effects. Thus, this study will explore the difference between measured temperature and monitored temperature for operating air control system in the building, to which BEMS is applied. Also, it will suggest a method to accurately predict the load of air-conditioning, and will examine the different amounts of the load according to the temperature as well as the reduced amount of the load through changes of operation standard temperature.
This study developed the pressure measurement monitoring system named VIP-2000 for monitoring a pressure of ullage space in cargo tank. VIP-2000 is designed in compliance with IMO(international maritime organization) SOLAS 74, Chap. II-2 Req. 59. IMO is providing the establishment of a pressure measurement equipment for secure the stability from vacuum or the overpressure that caused by in breakdown of the P/V valve. VIP-2000 operates the early warning of the visible and audibility in dangerous situation of cargo tank. In order to evaluate the performance of VIP-2000, the pressure measurement experiments have been conducted.
In this paper, the necessity of developing effective nondestructive testing and monitoring techniques for the evaluation of structural integrity and performance is described. The evaluation of structural integrity and performance is especially important when the structures and subject to abrupt external forces such as earthquake. A prompt and extensive inspection is required over a large area of earthquake-damaged zone. This evaluation process is regarded as a part of performance-based design. In the paper, nondestructive testing and monitoring techniques particularly for concrete structures are presented as methods for the evaluation of structural integrity and performance. The concept of performance-based design is first defined in the paper followed by the role of evaluation of structures in the context of overall performance=based design concept. Among possible techniques for the evaluation, nondestructive testing methods for concrete structures using radar and a concept of using fiber sensor for continuous monitoring of structures are presented.