이 논문에서는 파랑 하중을 받는 부유식 구조체의 운동 해석에 있어서 시스템 식별 방법을 이용한 상태공간방정식 모델을 수립하 고 해석하는 방법을 제안하였다. 상태공간방정식 모델의 수립 방법으로는 주파수영역에서 하중-변위 입출력 관계에 대한 목표 전달 함수를 구하고 이에 가장 근접하는 상태공간방정식을 구하는 절차를 제시하였다. 전통적으로 부유식 구조체 운동의 시간영역 해석은 지연함수의 합성곱적분을 포함하는 Cummins 방정식을 시간적분하여 이루어진다. 상태공간방정식 모델은 이러한 시간영역해석을 효과적으로 수행하기 위한 방법의 하나로서 연구되어 왔다. 제안하는 방법에서는 시스템 식별방법인 N4SID 와 전달함수의 분모 및 분자 다항식의 계수를 설계변수로 하는 최적화방법을 사용하여 목표 전달함수에 상응하는 상태공간방정식을 구한다. 제안하는 방법 의 적용성을 보이는 예제로서 단자유도 수치모델 및 6자유도 바지의 운동을 해석하였다. 제시하는 상태공간방정식 모델은 주파수영 역 및 시간영역에서 모두 기존의 해석결과와 잘 일치하고 시간영역해석에서는 계산의 정확도를 확보하면서 계산 시간을 크게 줄일 수 있음을 확인하였다.
이 연구에서는 3축 방향 지반운동이 작용하는 지반-구조물 상호작용계의 비선형 지진응답 해석을 수행한다. 비선형 거동 이 예상되는 구조물과 지반의 근역은 비선형 유한요소에 의해 모형을 구성한다. 기하학적 형상과 재료 성질이 균일하고 선 형 거동을 가정하는 원역지반은 무한 영역으로의 에너지 방사를 정확히 고려할 수 있는 3차원 perfectly matched discrete layer에 의해 수치 모형을 구성한다. 이와 같은 지반-구조물 상호작용계의 수치모형을 사용하여 3축 방향 지반운동이 작용 하는 비선형 지진-구조물 상호작용계의 지진응답해석을 수행한다. 3축 방향 지반운동이 작용하는 경우에는 입력 지반운동의 특성에 따라 시스템의 응답이 우세하게 발현되는 방향이 존재하고 그 수준 또한 정밀한 지진응답해석을 통해 산정하여야 한 다. 이 연구의 해석기법은 구조물과 지반의 재료 비선형 거동, 기초와 지반 경계면에서의 경계 비선형 거동 등 다양한 비선 형 지반-구조물 상호작용 해석에 확장 적용할 수 있을 것이다.
이 연구에서는 3축 방향 지반운동이 작용하는 지반-구조물 상호작용계의 비선형 지진응답 해석을 수행한다. 비선형 거동이 예상되는 구조물과 지반의 근역은 비선형 유한요소에 의해 모형을 구성한다. 기하학적 형상과 재료 성질이 균일하고 선형 거동을 가정하는 원역지반은 무한 영역으로의 에너지 방사를 정확히 고려할 수 있는 3차원 perfectly matched discrete layer에 의해 수치 모형을 구성한다. 이와 같은 지반-구조물 상호작용계의 수치모형을 사용하여 3축 방향 지반운동이 작용하는 비선형 지진-구조물 상호작용계의 지진응답해석을 수행한다. 3축 방향 지반운동이 작용하는 경우에는 입력 지반운동의 특성에 따라 시스템의 응답이 우세하게 발현되는 방향이 존재하고 그 수준 또한 정밀한 지진응답해석을 통해 산정하여야 한다. 이 연구의 해석기법은 구조물과 지반의 재료 비선형 거동, 기초와 지반 경계면에서의 경계 비선형 거동 등 다양한 비선형 지반-구조물 상호작용 해석에 확장 적용할 수 있을 것이다.
The purpose of this study is to identify which width of the base of support(BOS) is safer and more effective in lifting by comparing muscle activations and body sways when lifting objects under the width variation of the BOS. A total of fifteen healthy adults participated in this study. For the width variation of the BOS, the participants changed the width between their feet into three different types(10cm, 32cm, 45cm) and lifted a 10kg four times in each type after going up on a force plate. In order to measure body sways according to the width variation of the BOS, a motion analysis system was used. In addition, in order to measure the muscle activations of lower extremities, including the erector spinae, gluteus maximus, rectus femoris, and tibialis anterior, an electromyogram(EMG) analysis was employed. In addition, the Borg's scale was drawn by quantifying the subjective discomfort levels felt from each width of the BOS. In conclusion, no statistically significant differences according to the width variation of the BOS were observed(p=.295, .308)(p>.05). However, a statistically significant difference was exhibited between the Borg's scale, which indicates the discomfort levels from lifting performances, and the width variation of the BOS (p=.000*).
본 논문에서는 교량 모니터링 시스템의 일부분으로 서해대교에 설치된 교량 하중측정 시스템(BWIM system)으로부터 획득한 신호를 분석하여 통행차량의 정보를 추출하기 위한 알고리즘의 개발과정과 이를 위해 수행한 현장 차량주행시험에 대하여 기술하였다. 개발된 BWIM 시스템은 포장층에 매설하는 축감지기가 없는 형태로, 바닥판과 가로보에 설치된 변형률계로부터 측정한 시간이력 변형률신호만을 이용하였다. 이들 측정신호로부터 추출하고자 하는 차량의 정보는 통과차로, 통과속도, 차 축수 및 총 중량이며, 이들 정보의 추출을 위해 패턴인식기법의 일종인 인공신경망(Aritificial Neural Network, ANN) 기법을 사용하였다. 현장 차량주행시험을 통하여 기지차량 및 미지차량 통행시의 BWIM 응답 데이터를 측정하였으며, 이들 실측데이터를 사용하여 인공신경망의 학습 및 성능검증을 수행하였다. 개발된 기법을 사용하여 추출되는 차량의 정보들은 현재의 교량상태 및 피로수명 평가시 활용될 수 있을 것이며, 향후 설계트럭 하중모델의 개정시 기초자료로도 활용될 수 있을 것으로 기대된다.