In this study, a model to optimize residual chlorine concentrations in a water supply system was developed using a multi-objective genetic algorithm. Moreover, to quantify the effects of optimized residual chlorine concentration management and to consider customer service requirements, this study developed indices to quantify the spatial and temporal distributions of residual chlorine concentration. Based on the results, the most economical operational method to manage booster chlorination was derived, which would supply water that satisfies the service level required by consumers, as well as the cost-effectiveness and operation requirements relevant to the service providers. A simulation model was then created based on an actual water supply system (i.e., the Multi-regional Water Supply W in Korea). Simulated optimizations were successful, evidencing that it is possible to meet the residual chlorine concentration demanded by consumers at a low cost.
This paper will present a simulation-optimization model for the scheduling of multi-projects. The objectives of this research include the minimization of value added projects execution cost, project completion time, project tardiness, and underutilization of contracted or outsourced resources. It is the three-phase research. In first phase, a mathematical and simulation models will be developed for multi-objectives. In second phase simulation model will be coupled with genetic algorithm to form a simulation-optimization model. The efficiency of genetic algorithm (GA) will be improved simultaneously with fine-tuning and hybridizing with other algorithms. The third phase will involve the presentation of a numerical example for the real time application of proposed research. Solution of numerical obtained with fine-tuned and hybridized simulation integrated GA will be compared with already available methods of simulation-optimization. This research will be useful for the scheduling of projects to achieve the befits of high profit, effective resource utilization, and customer satisfaction with on time delivery of projects.
Multi-objective optimization using response surface methodology-based surrogate model was employed to find optimal design parameter of TMD installed on structure under the El Centro earthquake. It is found that the RSM based weighted multi-objective optimized damper improves frequency responses and root mean square displacements of the structure without TMD by 31.6% and 82.3% under El Centro earthquake, respectively, and has an equal or higher performance than the conventionally designed dampers with respect to frequency responses and root mean square displacements and when applied to earthquakes.
본 연구는 다목적 유전자알고리즘을 이용하여 Tank 모형의 매개변수를 추정하는데 있어서 선호적순서화(preference ordering)를 적용한 연구로써, 목적함수의 개수가 여러 개인 경우에 발생할 수 있는 파레토최적화의 단점을 해결하기 위한 것이다. 최적화를 위한 목적함수는 모두 4가지를 사용하였으며, 선호적순서화를 통해서 구한 2차 효율성(2nd order efficiency)을 가지면서 정도(degree)가 3인 4개의 해 중에서 1개의 해만을
본 연구의 목적은 개념적인 강우-유출모형인 Tank 모형의 매개변수를 산정하기 위한 다목적 유전자알고리즘의 적용성을 평가하는 것이다. 다목적 유전자알고리즘 기법으로는 최근에 가장 많이 사용되는 기법중의 하나인 NSGA-II를 채택하여 Tank 모형과 결합하였으며, 4가지 목적함수(유출용적오차, 평균제곱근 오차, 고수유량 평균제곱근 오차 및 저수유량 평균제곱근 오차)값을 최소화하는 형태의 목적함수를 적용하였다. NSGA-II는 목적함수의 개수가 많아지면