검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2006.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 논문에서는 2002년 9월 태풍 루사로 인해 많은 재해 피해를 입은 강원도 강릉시 사천천 유역을 대상으로 다중 시기 원격탐사 자료를 이용하여 퇴적 지질환경 변화 정보를 추출하고 분석을 수행하였다. 다중 시기 자료에 대해 자동 임계치 설정 기반 무감독 변화 탐지 기법을 적용하여 여러 시기 및 센서별 변화 정보를 추출하였다. 변화탐지 결과, 제외지에서는 태풍 루사 직후 하천 탁도 변화, 습지의 수계 혹은 퇴적물로의 변화 및 계절적인 유량 차이에 의한 하도 노출 여부 등으로 변화지역이 나타났다. 주변 농경지에서는 홍수 및 산사태 등으로 인한 토사의 퇴적, 농지 개간 등으로 인한 변화가, 기타 지역에서는 제방 공사 등으로 인한 변화가 두드러지게 나타났다. 노한 야외 조사와 원격탐사 자료를 이용하여 미지형 분류도, 범람원 지역 지표 퇴적량 분포도 및 수해 지형 분류도를 작성하였다. 결론적으로 다중시기 고해상도 원격탐사 자료가 재해로 인한 변화 정보 추출에 유용하게 활용될 수 있을 것으로 기대되며, 이를 위해 고해상도 자료에 적합한 자료처리 기법 개발이 병행되어야 할 것으로 판단된다.
        4,300원
        2.
        2019.06 KCI 등재 서비스 종료(열람 제한)
        This study examined the efficiency of satellite images in terms of detecting wheat cultivation areas, and then analyzed the possibility of climate change through an correlation analysis of time series climate data from the western regions of Gyeongnam province, Korea. Furthermore, we analyzed the effect of climate change on wheat production through a multiple regression analysis with the time series wheat production and climate data. A relatively accurate distribution was achieved on the wheat cultivation area extracted through satellite image classification with an error rate of less than 10% in comparison to the statistical data. Upon correlation analysis with time series climate data, significant results were displayed in the following changes: the monthly mean temperature of the seedling stage, the monthly mean duration of sunshine, the monthly mean temperature of the growing period, the monthly mean humidity, the monthly mean temperature of the ripening stage, and the monthly mean ground temperature. Accordingly, in the study area, the monthly mean temperature, precipitation, and ground temperature generally increased whereas the monthly mean duration of sunshine and humidity decreased. The monthly mean wind speed did not display a particular change. In the multiple regression analysis results, the greatest effect on the production and productivity of wheat as climate factors included the annual mean humidity of the seedling stage, the annual mean temperature of the wintering period, and the annual mean ground temperature of the ripening stage. These results demonstrate that there is a change in wheat production depending on the climate change in the study area. in addition, it is determined that this study will be used as important basic data in the resolution of food security problems based on climate change.
        3.
        2018.06 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study is to identify the effectiveness of satellite images in detecting the areas of rice production in the Barisal of Bangladesh. We also investigated the effect of climate change on the crop production through comparative analysis of rice production area and production statistics with climate data at multi-temporal time scale. This analysis found that the classification of rice fields extracted through satellite image and made as the number of rice cultivation areas did not exceed 10 percent of the statistical data. Climate data analysis showed that the average temperature during the ripening stage has the greatest impact on Boro’s production. It would be more make sense if you can describe the results of how precipitation is also important for rice production in addition to temperature. Therefore, it is believed that this research could serve as a key basis for solving food security issues due to climate change.
        4.
        2006.04 KCI 등재 서비스 종료(열람 제한)
        The western coast of South Korea is famous for its large and broad tidal lands. Nevertheless, land reclamation, which has been conducted on a large scale, such as Sihwa embankment construction project has accelerated coastal environmental changes in the embankment inland. For monitoring of environmental change, vegetation change detecting of the embankment inland were carried out and field survey data compared with Landsat TM, ETM+, IKONOS, and EOC satellite remotely sensed data. In order to utilize multi-temporal remotely sensed images effectively, all data set with pixel size were analyzed by same geometric correction method. To detect the tidal land vegetation change, the spectral characteristics and spatial resolution of Landsat TM and ETM+ images were analyzed by SMA(spectral mixture analysis). We obtained the 78.96% classification accuracy and Kappa index 0.2376 using March 2000 Landsat data. The SMA(spectral mixture analysis) results were considered with comparing of vegetation seasonal change detection method.