검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        2.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        풀무치의 전국적인 발생현황 및 밀도조사의 결과, 한국에서는 전라남도 해남군 산이면과 전라남도 무안군 망운면 간척지에서 2015년 이후 지속적으로 높은 밀도의 발생이 관찰되었다. 우리는 두 지점에서 발생하는 풀무치의 기원을 알아내기 위하여 NADH dehydrogenase subunit (NAD) 2, NAD4 와 NAD5의 염기서열을 분석하였다. 그 결과 해남풀무치의 경우는 중국동북부의 Liaoning성 과 Heilongjiang성 개체군과 기 원이 비슷하고, 무안풀무치의 경우는 일본풀무치와 기원이 비슷하다는 결론에 도달했다. 이전의 전 세계적인 풀무치의 진화에 관한 연구에서 한 국의 풀무치가 포함이 되지 않아서 한반도 풀무치의 기원은 알 수 없었다. 본 연구의 결과는 중국북동부 지방에서 8만 년 전에 분리된 풀무치 중 일부가 한반도로 이동을 하여 해남 지역에 정착을 하고 일부는 러시아 사할린과 일본 홋카이도섬을 거쳐서 무안으로 이동하였을 가능성을 보여주 고 있다. 하지만, 한반도로 내려온 풀무치가 해남과 무안계통으로 분리된 후 일본으로 이동하였을 가능성도 배제할 수 없다.
        4,000원
        3.
        2011.12 구독 인증기관 무료, 개인회원 유료
        Mitochondria diseases have been reported to involve structural and functional defects of complex I-V. Especially, many of these diseases are known to be related to dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I). The dysfunction of mitochondria complex I is associated with neurodegenerative disorders, such as Parkinson's disease, Huntington's disease, and Leber’s hereditary optic neuropathy (LHON). Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) is largest and consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. The Saccharomyces cerevisiae NDI1 gene using a recombinant adeno-associated virus vector (rAAV-NDI1) was successfully expressed in AML12 mouse liver hepatocytes and the NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced cells was not affected by rotenone which is inhibitor of complex I, but was inhibited by antimycin A. Furthermore, these results indicate that Ndi1 can be functionally expressed in the AML12 mouse liver hepatocytes. It is conceivable that the NDI1 gene is powerful tool for gene therapy of mitochondrial diseases caused by complex I deficiency. In the future, we will attempt to functionally express the NDI1 gene in mouse embryonic stem (mES) cell.
        4,000원
        4.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electron transport chain (ETC) delivers electrons from many substrates to reduce molecular oxygen to water. ETC accomplishes the stepwise transfer of electrons through series of protein complexes conferring oxidation‐reduction reactions with concomitant transport of p roton across membrane, g enerating a proton g radient which leads ATP s ynthesis b y F0F1ATPase. Bacterial ETC initiates with oxidation of NADH by NADH dehydrogenase complex (complex I). Therefore, damage of complex I leads to insufficient function of ETC and accumulation of NADH inside the cell. Contribution of ETC activity and its consequent changes of NADH levels to bacterial damage response against reactive oxygen and nitrogen species (ROS/RNS) has been poorly understood. In this study, by constructing ndh mutant Salmonella lacking complex I NADH dehydrogenase 2, we evaluated the effect of ETC deficiency to bacterial resistance against ROS and RNS. The growth of ndh mutant Salmonella is impaired in the culture media containing hydrogen peroxide, but rather accelerates in the media containing nitric oxide donors. Data suggest that redox potential of NADH accumulated inside the cell by ETC blockage may affect inversely to bacterial resistance against reactive oxygen species and reactive nitrogen species.
        4,000원
        6.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Many studies propose that dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I) is associated with neurodegenerative disorders, such as Parkinson's disease and Huntington's disease. Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. With a recombinant adeno-associated virus vector carrying the NDI1 gene (rAAV-NDI1) as the gene delivery method, we were able to attain high transduction efficiencies even in the human epithelial cervical cancer cells that are difficult to transfect by lipofection or calcium phosphate precipitation methods. Using a rAAV-NDI1, we demonstrated that the Ndi1 enzyme is successfully expressed in HeLa cells. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced HeLa cells were not affected by rotenone which is inhibitor of complex I, but was inhibited by flavone and antimycin A. The NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. In particular, in the NDI1-transduced cells, the yeast enzyme becomes integrated into the human respiratory chain. It is concluded that the NDI1 gene provides a potentially useful tool for gene therapy of mitochondrial diseases caused by complex I deficiency.
        4,000원
        8.
        2016.03 KCI 등재 서비스 종료(열람 제한)
        Domestic sewerage treatment plant is operated by activated sludge method and its modified method by using microorganism. In most cases, a method of using microorganism is directly controlled by the operator based on individual judgment through factors of DO, pH and ORP. In addition, under aerobic condition in bioreactor, energy consumption including excessive air injection is learned to be somewhat plenty. In order to solve this problem, in most of the process, improvement of internal recycling and activated environmental factor of microorganism were researched extensively. However, as factors are changed depending on various conditions, it is not sufficient as an indicator of judgment. As such, a research on operation of bioreactor that measures metabolic change in short time by directly measuring activated condition of microorganism using NADH fluorometer is required in reality.It is considered that the method like this could supplement problem of energy consumption being occurred in the existing treatment method and operational optimization of bioreactor would be enabled by controlling optimal air volume. Therefore, in this study, in order to obtain optimal operational indicator of bioreactor, proper air volume control test was performed and through batch test and site evaluation, possibility of NADH sensor being utilized as operational control indicator of bioreactor is intended to be analyzed. In order to compare with measured value, DO, ORP that are operational control indicator of existing bioreactor were used. As MLSS concentration was increased through batch test, NADH value was increased and site evaluation also showed similar tendency to batch test. Resultantly, it could be confirmed that changing level of NADH fluorometer was a sensor that could measure bioreactor condition effectively and optimized scale of bioreactor is considered to be utilized.