PURPOSES : The purpose of this study was to evaluate the performance of a titanium dioxide (TiO2) asphalt surface treatment agent for reducing NOx on the roadside at laboratory and full scales. METHODS : To verify the NOx reduction performance of TiO2 and silicon-based resin-applied surface treatment agents at the lab scale, a bed flow photo reactor test (ISO standard) and a mixed tank photo reactor test designed to apply real-scale construction materials were conducted. Subsequently, the full-scale NOx reduction performance was verified using a full-scale demonstration facility, and the field construction capability of the TiO2 asphalt surface treatment agent was verified through actual road site application. RESULTS : The bed flow photoreactor and mixed tank photoreactor methods showed the same trend in the NOx removal performance. Evaluation of the NOx removal performance of the TiO2 surface treatment agent revealed that the NO removal rate was approximately 13% at the laboratory scale and 15% at full scale. CONCLUSIONS : Through this study, it was determined that the asphalt surface treatment agent applied with TiO2 will have a sufficient NOx reduction effect in an actual road site. In the future, it will be necessary to analyze the continuity of the effect according to traffic volume through continuous monitoring in the field.
The fuel used in this study, DMM is an oxygen additive containing 42.5% oxygen by weight and dissolved in diesel fuel, also known as methyl alcohol or Dimethoxymethane (CH3-O-CH2-O-CH3). DMM, which is a colorless liquid, shows chemical characteristics of gas-liquid and is also used as a diesel fuel component. In this study, five mixtures were added to the common diesel fuel at DMM addition rates of 2.5, 5, 7.5, 10 and 12.5% by volume. A single cylinder, four strokes, DI diesel engine was used as the test engine. Experimental data were also collected at 24 engine speed-load conditions operating in steady state. The purpose of this experiment was to study the effect of the addition ratio of oxidized fuel mixed in diesel fuel on engine power and exhaust performance. When compared with the common diesel fuel, the exhaust of Smoke was substantially reduced in all DMM mixing ratios. These results indicate that DMM can be an effective blend of diesel fuel and is an environmentally friendly alternative fuel. This study also shows that smoke and NOx emissions can be reduced at the same time through the application of oxygen fuel and EGR.