Negative temperature coefficient (NTC) materials have been widely studied for industrial applications, such assensors and temperature compensation devices. NTC thermistor thick films of Ni1+xMn2-xO4+δ (x=0.05, 0, −0.05) werefabricated on a glass substrate using the aerosol deposition method at room temperature. Resistance verse temperature (R-T)characteristics of the as-deposited films showed that the B constant ranged from 3900 to 4200 K between 25oC and 85oCwithout heat treatment. When the film was annealed at 600oC 1h, the resistivity of the film gradually decreased due tocrystallization and grain growth. The resistivity and the activation energy of films annealed at 600oC for 1 h were 5.203, 5.95,and 4.772KΩ·cm and 351, 326, and 299meV for Ni0.95Mn2.05O4+δ, NiMn2O4, and Ni1.05Mn1.95O4+δ, respectively. The annealingprocess induced insulating Mn2O3 in the Ni deficient Ni0.95Mn2.05O4+δ composition resulting in large resistivity and activationenergy. Meanwhile, excess Ni in Ni1.05Mn1.95O4+δ suppressed the abnormal grain growth and changed Mn3+ to Mn4+, givinglower resistivity and activation energy.
In this study, the effects of carbon black (CB) content and anodic oxidation treatment with AgNO3 on positive temperature coefficient (PTC) behavior of CB/HDPE nanocomposites were investigated. Also, the addition of elastomer as a toughing agent was studied. The 20~50 wt% of CB, 0~5 wtt% of elastomer, and 1 wt% of AgNO3-filled HDPE nanocomposites were prepared using the internal mixer in 60 rpm at 160˚C and the compression-molded at 180˚C for 10 min. As a result, the room temperature resistivity and PTC intensity of the composites were dependent, to a large extent, on the content of CB, addition of elastomer, and surface chemical properties that were controlled in the relative arrangements of the carbon black aggregates in a polymeric matrix. Moreover, the composites with relatively low room temperature resistivity and suitable PTC intensity could be achieved by treatment of AgNO3. Consequently, it was noted that PTC effect was due to the deagglomeration or the breakage of the conductive networks caused by thermal expansion or crystalline melting of the polymeric matrix.