Activated carbon has broad application prospects for treating pollutants due to its easy availability, low cost and good adsorption. In our work, nano-activated carbons (NAC) with abundant functional groups are obtained by the oxidation modification of HNO3, ( NH4)2S2O8, and KMnO4, which are used to construct the particle electrodes to degrade NDEA in a continuous flow electrochemical reactor, and the influence of relevant factors on the performance of NDEA removal is discussed. The experimental data show that the optimal degradation efficiency is 42.55% at the conditions of 3 mL/min influent water flow, 0.21 M electrolyte concentration, 10 mA/cm2 current density, and 10 μg/mL initial NDEA concentration. The degradation of NDEA conforms to a quasi second order kinetic equation. The electrocatalytic mechanism of NAC electrodes for removing NDEA is firstly discussed. The effects of different free radicals on the degradation of NDEA are also demonstrated through free radical quenching experiments, indicating that the degradation of NDEA is dominated by ⋅OH. The degradation pathway of NDEA and final products are obtained using GC–MS. NAC particle electrodes as the cheap and efficient electrocatalyst in continuous flow electrochemical reactor system provide a greener solution for the removal of disinfection by-products from drinking water.
The production of macroalgae-derived adsorbent is of great importance to realize the idea of treating pollutants with invaluable renewable materials. Herein, a novel meso-micro porous nano-activated carbon was prepared from green alga Ulava lactuca in a facile way via chemical activation with zinc chloride. The resultant activated carbon possesses a significant specific surface area 1486.3 m2/ g. The resulting activated carbon was characterized and investigated for the adsorption of Direct Red 23 (DR23) dye from an aqueous environment. Batch method was conducted to study the effects of different adsorption processes on the DR23 dye adsorption from water. Isotherms and kinetics models were investigated for the adsorption process of DR23 dye. It was found that the adsorption data were well fitted by Langmuir model showing a monolayer adsorption capacity 149.26 mg/g. Kinetic experiments revealed that the adsorptions of DR23 dye can be described with pseudo-secondorder model showing a good correlation (R2 > 0.997). The prepared activated carbon from Ulava lactuca was exposed to a total of six regeneration experiments. The regeneration result proved that the fabricated activated carbon only loses 19% of its adsorption capacity after six cycles. These results clearly demonstrated the high ability of the obtained active carbon to absorb anionic dyes from the aqueous environment.
Nano Pd spot-coated active carbon powders were synthesized by a hydrothermal-attachment method (HAA) using PVP capped Pd colloid in a high pressure bomb at , 450 psi, respectively. The PVP capped Pd colloid was synthesized by the precipitation-redispersion method. PVP capped Pd nano particles showed the narrow size distribution and their particle sizes were less than 8nm in diameter. In the case of nano Pd-spot coated active carbon powders, nano-sized Pd particles were adhered in the active carbon powder surface by HAA method. The component of Pd was homogeneously distributed on the active carbon surface.