검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, Ni nanoparticle supported by graphene oxide (GO) (Ni-GO) is successfully synthesized through hydrothermal synthesis and calcination, and Cr(VI) is extracted from aqueous solution. The morphology and structure of Ni- GO composites are characterized by scanning electron microscopy (SEM), trans mission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). High-resolution transmission electron microscopy (HRTEM) and XRD confirms the high dispersion of Ni nanoparticle after support by GO. Loading Ni on GO can obviously enhance the stability of Ni-GO composites. It can be calculated from TGA that the mass percentage of Ni is about 60.67%. The effects of initial pH and reaction time on Cr(VI) removal ability of Ni-GO are investigated. The results indicate that the removal efficiency of Cr(VI) is greater than that of bared GO. Ni-GO shows fast removal capacity for Cr(VI) (<25 min) with high removal efficiency. Dynamic experiments show that the removal process conforms to the quasi-second order model of adsorption, which indicates that the rate control step of the removal process is chemical adsorption. The removal capacity increases with the increase of temperature, indicating that the reaction of Cr(VI) on Ni-GO composites is endothermic and spontaneous. Combined with tests and characterization, the mechanism of Cr(VI) removal by rapidly adsorption on the surface of Ni-GO and reduction by Ni nanoparticle is investigated. The above results show that Ni-GO can be used as a potential remediation agent for Cr(VI)-contaminated groundwater.
        4,000원
        2.
        2004.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        수경 재배된 케냐프의 중금속 축적량 및 제거량을 파악하고 서로의 관계를 도출하기 위하여 Cd, Cu, Cr, Ni 및 Zn이 포함된 반응조에 노출시켰다. 대상식물의 최적성장을 위한 pH, DO, 전도도 및 영양염의 농도조절은 액체비료를 이용하여 조정하였다. 8일의 수리학적 체류시간을 적용했을 때 Cr, Cd, Cu, Ni 및 Zn의 제거율은 각각 90.5%, 80.5%, 66.1%, 71.1% 및 79.4%였고 그 농도는 각각 2.34에서 0.54 mg
        4,000원
        3.
        2021.01 KCI 등재 서비스 종료(열람 제한)
        The purposes of this study were to evaluate the removal characteristics of COD, Ni, and P and to derive appropriate operating conditions for the plating wastewater according to NaOCl reaction time and pH operating conditions in the BPC unit process during the plating wastewater treatment process. As a results of evaluating the removal characteristics for raw wastewater by each BPC unit process, the removal efficiencies of COD, Ni and P in BPC 1-1 unit process were 72.8%, 99.1%, and 100.0%. Therefore, the proper reaction time of NaOCl was derived as 21.1 minutes. In order to maintain the +800 mV ORP and the reaction time of 20 minutes, the temporary injection and continuous injection of NaOCl in the BPC unit process were 13.7 mL and 18.7 mL, respectively. It was found that the temporary injection method of NaOCl reduced the chemical cost by 36.5% compared to the continuous injection method. Also, Ni showed the highest removal efficiency of 97.8% at pH 10.5. On the other hand, P showed a removal efficiency of 57.4% at pH 10.0.