본 연구는 대기 중 장기간 노출로 인해 열화된 Ni-rich NCM811(LiNi₀.₈Co₀.₁Mn₀.₁O₂) 양극 소재의 계면 저항 증가 및 전기화학적 성능 저하 문제를 해결하기 위해, 물리적 열처리 방법을 제안하였다. NCM811 양극 소재는 대기 중 수분 및 이산화탄소와의 반응에 의해 표면에 불순물이 형성되기 쉬우며, 이는 고체전해질과의 계면 저항을 증가시켜 전고 체전지 시스템에서의 성능 저하를 초래한다. 이러한 문제를 해결하기 위해, 열화된 NCM811 양극 소재를 O₂ 분위기 에서 열처리하여 표면의 불순물을 효과적으로 제거하고 양극 표면의 전도성을 향상시킴으로써, 양극-고체전해질 간의 계면 저항을 현저히 감소시키는 결과를 얻었다. SEM, XRD, ICP 분석을 통해 열화된 NCM811 양극 소재의 표면 특성 변화를 분석하였으며, 열처리 후 NCM811 소재의 계면 특성이 개선됨에 따라 전기화학적 성능 또한 상용 NCM811 소재와 유사한 수준으로 회복되는 것을 확인하였다. 특히, O₂ 분위기의 물리적 열처리 방법은 Ni-rich NCM811 양극 소재의 열화를 효과적으로 억제하고 고체전해질과의 계면 접촉을 개선하여, 황화물계 전고체전지의 전기화학적 성능 을 획기적으로 향상시킬 수 있는 유망한 기술임을 입증하였다. 이러한 결과는 전고체전지 상용화를 위한 핵심 전략으 로 적용될 수 있을 것으로 기대된다.
본 연구는 코팅 방법을 활용한 단결정 양극 소재 연구로서 Ni-rich계 다결정 양극 소재로 부터 단결정 양극 소재를 합 성하여 사이클 구동 시 양극 소재의 안정성을 향상시키고자 한다. 양극 소재에 LixCoO2와 LixSnO3 를 각각 코팅하여 이차입자 내부 혹은 외부에 코팅층이 형성된 양극 소재를 합성한 후 이를 소결하여 단결정 형성에 대한 영향을 비교 하였다. 입자 외부에 LixSnO3가 코팅되어 열처리 된 Ni0.8Co0.1Mn0.1O2(NCM811)의 경우 코팅 처리 없이 열처리된 양극 소재 보다 개선된 수명특성을 보였으나, 단결정화가 이뤄지지 않았다. 입자 내부에 LixCoO2 코팅층이 형성된 NCM811 을 열처리 한 결과 이차입자 내부에 형성된 Co 코팅층이 결정화되어 50회 사이클 후 기준 단결정 양극 소재의 방전용 량인 117.34 mAh·g-1 대비 129.11 mAh·g-1의 높은 방전용량을 나타내었고, 형상제어를 통해 이성적인 단결정화가 이뤄 졌다. 본 연구는 다결정체인 Ni-rich 양극소재의 단결정화에 대한 유요한 통찰력을 제공할 것으로 예상한다.
Ni-rich계 양극 소재는 낮은 가격과 높은 용량으로 인해 고용량 달성을 위한 상용화 소재로 주목받고 있지만, 이 소재의 경 우 전기화학적 불안정성으로 인한 한계를 가진다. 그래서 다양한 표면 코팅 방법을 통해 성능향상을 이루고 있지만, 성능향상이 소 재와 코팅 방법때문인지 또는 코팅 범위가 넓어진 것 때문인지는 모호하게 남아 있다. 본 연구에서는 전이금속으로 양극 활물질을 코팅할 때 전구체 코팅 범위에 따른 리튬이온배터리 전기화학 성능평가를 분석하였다. 상업용 LiNi0.8Co0.1Mn0.1O2 양극 소재 표면을 에탄올 용액에 용해된 리튬-코발트와 리튬-주석 아세테이트 전구체를 코팅하였고, 교반속도를 다르게 하여 (200 rpm 및 600 rpm) 전구체 코팅 범위를 다르게 하였다. 리튬-코발트 아세테이트 전구체의 경우 교반속도가 증가할수록 코팅 범위가 증가하였지만, 리튬 -주석 아세테이트 전구체의 경우 교반속도가 증가할수록 코팅 범위가 감소하였다. 하지만 원소의 종류에 관계없이 코팅 범위가 넓 은 경우에 상대적으로 우수한 전기화학적 성능을 나타내었다. 코팅된 양극 활물질의 물리적 특성은 SEM 및 XRD를 이용하여 분석하 였으며, 전기화학적 성능은 초기 충·방전 용량, 사이클 안정성 및 율속특성 테스트를 통해 조사하였다.
Due to the serious air pollution problem, interest in eco-friendly vehicles is increasing. Solving the problem of pollution will necessitate the securing of high energy storage technology for batteries, the driving force of eco-friendly vehicles. The reason for the continuing interest in the transition metal oxide LiMO2 as a cathode material with a layered structure is that lithium ions reveal high mobility in two-dimensional space. Therefore, it is important to investigate the effective intercalation and deintercalation pathways of Li+, which affect battery capacity, to understand the internal structure of the cathode particle and its effect on the electrochemical performance. In this study, for the cathode material, high nickel Ni0.8Co0.1Mn0.1(OH)2 precursor is synthesized by controlling the ammonia concentration. Thereafter, the shape of the primary particles of the precursor is investigated through SEM analysis; X-ray diffraction analysis is also performed. The electrochemical properties of LiNi0.8Co0.1Mn0.1O2 are evaluated after heat treatment.