Energy and environmental are always two major challenges for the sustainable development of the modern human being. For avoiding the serious environmental pollution caused in the fabrication process of porous carbon, a popular energy storage material, we reported a facile, green and activating agent free route hereby directly carbonizing a special biomass, Glebionis coronaria. A nitrogen doped hierarchical porous carbon with a specific surface area of up to 1007 m2 g−1 and a N doping content of up to 2.65 at.% was facilely fabricated by employing the above route. Benefiting from the peculiarly hierarchical porous morphology, enhanced wettability and improved conductivity, the obtained material exhibits superior capacitance performance, which capacitance reaches up to 205 F g−1 under two-electrode configuration, and no capacitance loss is observed after 5000 cycles. Meanwhile, the capacitance retention of the obtained material arrives up to 95.0% even under a high current density of 20 A g−1, illuminating its excellent rate capability. The fabricated nitrogen-doped hierarchical porous carbon with larger capacitance than commercial activated carbon, excellent rate capability and cycle stability is an ideal cost-efficient substitution of commercial activated carbon for supercapacitor application.
호소의 부영양화와 같은 수계오염을 유발하는 질소 및 인에 대한 방류수 수질기준 규제가 점차 강화되고 있으며, 최종 개정된 방류수 수질기준에서는 처리수를 Ⅰ지역에 방류하는 경우, 총 질소 20 mg-N/L, 총 인 0.2 mg-P/L로 규제하고 있다. 이에 따라 대부분의 공공하수처리시설은 고도처리공법을 확보하고 있으며 현재 운영중인 고도처리시설에는 생물학적 고도처리법인 SBR공법과 A O 공법이 가장 많이 적용되고 있다. 그러나 한국 하수 성상의 경우 질소에 대한 유기물의 비율이 낮기 때문에 질소 제거효율이 낮고, 탈질을 위해 외부 탄소원을 추가적으로 주입함에 따라 운영비의 증가 문제가 발생된다. 외부 탄소원의 주입에도 불구하고 2015년 환경부에서 발표한 방류수 수질현황을 참고하면 공공하수처리시설의 T-N 제거효율은 약 70%에 그친다. 이에 본 연구에서는 국내 생물학적 고도처리법으로 가장 많이 적용되고 있는 SBR 공법에 수처리용 스펀지 담체를 투입하였을 때, 폭기구간에서의 질소제거 효율을 평가하고자 하였다. 스펀지 담체와 같이 담체 내외부의 물질전달이 자유로운 담체의 경우, 담체 내외부에 형성되는 산소 농도구배로 인하여 담체 내부에는 국소적인 무산소 조건이 형성되며, 그에 따라 담체 외부에서는 질산화가 내부에서는 탈질이 일어나는 SND(Simultaneous Nitrification and Denitrification) 기작이 일어날 수 있다. 이에 폭기 전・후의 암모니아성 질소와 질산성 질소 측정을 통해 SND 효율을 계산한 결과, 약 30%의 효율을 나타내었으며, 이는 탈질이 유도되는 단위공정에서 탈질에 필요한 외부탄소원의 요구량을 감축시킬 수 있으므로 경제적인 측면에서 긍정적인 영향을 미칠 것으로 사료된다.
국제연합식량농업기구(FAO, United Nations Food and Agriculture Organization)의 보고서에 따르면 21세기 전 세계의 인구는 2050년 약 90억에 달할 것으로 예측되며, 이러한 인구팽창으로 인한 식량부족 및 사료공급의 문제는 생산 시 야기되는 자원고갈 및 환경영향에 대한 우려와 함께 전 세계의 큰 관심사로 화두되었다. 이렇듯 현대사회가 직면한 복합적인 문제점을 해결하기 위해 전 세계적으로 새로운 미래자원에 대한 탐색이 이루어졌으며, 곤충이 하나의 유망자원으로서 새롭게 각광받기 시작하였다. 특히 목질을 섭식하는 흰개미의 경우 난분해성 물질인 리그닌과 셀룰로오스의 분해능력으로 인해 해외에서는 이미 오래전부터 흰개미의 장내 미생물을 이용하여 목질계 바이오매스로부터 바이오에탄올을 생산하는 방법에 대해 연구가 진행되어왔다. 하지만 국내에서는 흰개미를 목조 문화재를 가해하는 해충으로 분류하여 흰개미의 방제에 초점을 맞추어 연구가 많이 진행되어왔을 뿐 유용자원으로서의 흰개미의 잠재성에 대한 관심과 연구가 미흡한 실정이다. 또한, 흰개미는 우수한 단백질 공급원으로서 일부 국가에서는 식용 및 사료로서 활용하고 있지만 이에 따른 환경영향 및 효율에 관한 연구 역시 미흡하다. 따라서 본 연구는 국내에 분포하는 일본흰개미(Reticulitermes speratus kyushuensis Morimoto)를 대상으로 흰개미가 주로 섭식하는 폐목재를 먹이로 주어 사육하였을 때, 생산되는 식용과 사료의 온실가스 발생량(LCA, Life cycle assessment)과 질소의 순환효율(ROI, Return on Investment)을 정량화하여 환경적・경제적 이점을 도출하고자 하였다.정량화된 온실가스 발생량과 질소의 순환효율은 식용으로 활용할 경우 기존의 단백질원인 한우, 양돈, 육계, 대두와 비교하고, 사료의 경우 대두박과 비교하였다. 그 결과 흰개미를 식용과 사료로 이용할 경우 온실가스 발생량 측면에서 비교적 높은 값을 나타내었으며, 질소의 순환효율에서는 상대적으로 우수한 결과를 나타내었다. 미래 유망자원으로서 보다 다양한 곤충에 대한 탐색이 이루어질 필요성이 있으며, 곤충활용에 따른 환경적⋅경제적 이점의 정량화는 향후 곤충산업의 발전방향을 제시하고 활성화하는데 이바지할 수 있을 것으로 예상한다.
국제연합식량농업기구(FAO)는 2050년, 전 세계 인구 수가 약 90억에 이를 것으로 예측하였다. 이와 같은 인구 증가는 여러 식량 및 환경 문제들을 야기할 수 있다. 또한 식량 및 에너지원 생산과정에서 자연계에 과잉으로 배출되는 질소, 인은 토양 산성화 및 부영양화 등의 환경문제를 유발할 수 있다. 이에 대한 해결책으로 FAO에서는 ‘곤충’을 자원(식・약품, 사료, 비료 등)으로 활용하는 것을 제시하였다. 현재 국내 연구는 곤충의 이용가능성 여부 및 활용기술개발 위주의 연구에 치중되어있어 곤충활용에 따른 환경성 연구는 전무한 실정이다. 따라서 본 연구에서는 국내에서 식용곤충으로 인정받은 곤충 6종 중 갈색거저리와 벼메뚜기를 선정하여 곤충의 활용방안에 따른 환경성 평가를 진행하였다. 갈색거저리는 최근 식량자원으로써 각광받고 있는 종이며 번데기까지 사용할 수 있는 완전변태 곤충이다. 벼메뚜기는 예로부터 식품으로 이용된 친숙한 종이며 대표적인 불완전변태 곤충이다. 본 연구의 목적은 곤충 분류(번데기의 유무)에 따른 활용방안의 환경성을 비교・평가하고 이를 기존 단백질원과 비교하는 것이다. 갈색거저리와 벼메뚜기의 환경성 평가는 질소, 인 흐름분석 및 전과정평가를 사용하였다. 이는 인간이 곤충을 단백질원으로 섭취하였을 경우와 곤충 사료로 키운 가축을 섭취하였을 경우로 나누어 분석하였다. 이를 토대로 물질흐름의 각 단계를 비료, 작물, 곤충, 가축, 사람으로 나누어 유입, 유출되는 질소와 인의 양을 산정하고 이에 따른 질소, 인 이용효율을 산정하였다. 또한 갈색거저리와 벼메뚜기 사육 시 발생하는 온실가스 량을 기존의 단백질원 생산과 비교 하였다.연구 결과 갈색거저리가 기존 단백질원인 한우와 벼메뚜기보다 질소, 인이용효율이 높았으며 온실가스 발생량이 적었다. 또한 갈색거저리는 번데기까지 사료로써 이용이 가능하기 때문에 활용범위가 넓을 것이라 생각한다.
세계 인구가 증가하면서 식량문제가 발생하며 이러한 식량을 생산하는 과정에서 발생하는 온실가스는 기후변화문제를 유발하고 있다. 질소는 단백질의 주요 요소로 동물이나 식물에게 필수적인 성분이나 과잉 공급되어 주변 수계로 배출되어 부영양화문제가 발생하고 있다. 인은 계속 수요가 증가하는데 한정적인 인광석양으로 인해 자원고갈문제가 발생하고 있다. 따라서 질소와 인의 손실을 예방하고 효율적으로 이용하기 위한 흐름파악이 필요하다. 그리고 물질을 효과적으로 순환시키는 것이 필요하다. 이러한 문제를 해결할 대책으로 국제연합식량 농업기구(FAO)는 곤충을 적극 권장하고 있다. 누에는 다른 곤충들과 달리 오래전부터 우리나라에서 많이 길러왔으며 최근 양잠산업을 웰빙・친환경・기능성 산업으로 육성하기 위한 제2차 양잠산업 육성 5개년 계획이 확정되어 양잠산업의 규모는 점점 커질 것으로 보인다. 누에는 식품으로 이용할 수 있을 뿐 아니라 잠용박을 이용하여 사료를 만들 수도 있다. 또한 잠분은 유기질 비료로 사용할 수 있다. 최근 원유가 상승 및 원유 자원의 고갈문제가 대두되고 자연 상태에서 분해되지 않는 물질을 소각하거나 매립하면서 발생하는 환경문제가 증가하면서 원유로부터 추출한 물질로 합성하여 만든 플라스틱을 대체할 수 있는 누에의 산물인 실크 피브로인을 이용한 생분해성소재(biomaterial)개발이 활발히 이루어지고 있다. 따라서 본 연구는 누에의 활용에 따른 질소, 인 흐름을 분석하여 질소, 인 이용 효율을 평가하고 온실가스 배출량을 평가하였다. 질소, 인 흐름 분석 시 사용하는 문헌자료 및 통계수치는 국내 자료와 외국자료를 비교하여 사용하였다. 통계자료는 최근 자료를 기준으로 사용한다. 누에를 식품화 하는 경우는 누에5령3일을 이용하여 누에가루를 만들었을 경우와 번데기를 식품으로 섭취하는 경우 모두 고려한다. 단백질 중 질소 함량은 16%로 계산하였다. 질소, 인의 흐름 분석 시 자연적, 인위적 질소, 인 모두 고려한다. 효율은 유출량을 유입량으로 나누어 구한다. 온실가스 배출량은 전과정평가를 통해 산정한다.
국제연합식량농업기구(FAO)는 2050년, 전 세계 인구 수가 약 90억에 이를 것으로 예측하였다. 이와 같은 인구 증가는 식량 부족, 물 부족, 기후변화, 자원고갈 등 여러 문제들을 야기할 수 있다. 또한 식량 및 에너지원 생산과정에서 자연계에 과잉으로 배출되는 질소, 인은 토양 산성화 및 부영양화 등의 환경문제를 유발할 수 있다. 이에 대한 해결책으로 FAO에서는 ‘곤충’을 자원으로 활용하는 것을 제시하였다. 이는 곤충을 식・약품, 사료, 비료 등으로 활용하는 것으로 식량 부족문제 및 환경문제 해결을 꾀하는 것이다. 현재 국내 연구는 곤충의 이용가능성 여부 및 활용기술개발 위주의 연구에 치중되어있어 곤충활용에 따른 환경성 연구는 전무한 실정이다. 따라서 본 연구에서는 국내에서 식용곤충으로 인정받은 곤충 6종 중 하나인 벼메뚜기를 선정하여 벼메뚜기의 활용방안에 따른 환경성 평가를 진행하였다. 벼메뚜기는 예로부터 식품으로 이용된 친숙한 종이다. 벼메뚜기의 성분함량을 기존의 식품 및 사료와 비교하였을 때 유사하거나 높기 때문에 단백질원 및 사료로써의 이용가능성은 충분하다. 벼메뚜기의 환경성 평가는 활용방안에 따른 질소, 인 흐름분석 및 온실가스 배출량을 산정하여 진행하였다. 이는 인간이 벼메뚜기를 단백질원으로 섭취하였을 경우와 벼메뚜기 사료로 키운 가축을 섭취하였을 경우로 나누어 분석하였다. 이를 토대로 물질흐름의 각 단계를 비료, 작물, 벼메뚜기, 가축, 사람으로 나누어 유입, 유출되는 질소와 인의 양을 산정하고 이에 따른 질소, 인 이용효율을 산정하였다. 질소와 인의 산정은 환경오염사전예방 측면에서 SCOPE 3(기타 간접 배출)에 속하는 온실가스 배출원을 포함하여 간접손실 항목에 추가하였다. 이는 기존 이용효율성 평가의 시스템 경계를 확장한 것이다. 또한 벼메뚜기 사육 시 발생하는 온실가스 량을 기존의 단백질원 생산과 비교하였다.
국제연합식량농업기구(FAO, United Nations Food and Agriculture Organization)의 보고서에 따르면 21세기 전 세계의 인구는 2050년 약 90억에 달할 것으로 예측되며, 이러한 인구팽창으로 인한 식량부족 및 사료공급의 문제는 생산 시 야기되는 탄소, 질소의 손실로 인한 자원고갈 및 환경영향에 대한 우려와 함께 전 세계의 큰 관심사로 화두되었다. 또한, 대두, 유채, 팜을 이용한 식물성 바이오오일의 생산은 식량작물을 에너지작물로 활용함에 따라 개발도상국의 식량부족 문제를 심화시키는 악효과를 야기했다. 이렇듯 현대사회가 직면한 복합적인 문제점을 해결하기 위해 전 세계적으로 새로운 미래자원에 대한 탐색이 이루어졌으며, 곤충이 하나의 유망자원으로서 새롭게 각광받기 시작하였다. 다양한 곤충 중 흰개미의 경우, 분류계통상 고등 및 하등 흰개미로 분류되는데 종류에 따라 섭식대상이 다양하며 소화기작에서도 약간의 차이를 보인다. 특히 목질을 섭식하는 흰개미는 난분해성 물질인 리그닌과 셀룰로오스의 분해능력으로 인해 해외에서는 이미 오래전부터 흰개미의 장내 미생물을 이용하여 목질계 바이오매스로부터 바이오에탄올을 생산하는 방법에 대해 연구가 진행되어왔다. 하지만 국내에서는 흰개미를 목조 문화재를 가해하는 해충으로 분류하여 흰개미의 방제에 초점을 맞추어 연구가 많이 진행되어왔을 뿐 유용자원으로서의 흰개미의 잠재성에 대한 관심과 연구가 미흡한 실정이다. 또한, 흰개미는 우수한 단백질 공급원으로서 일부 국가에서는 식용 및 사료로서 활용을 하고 있지만 이에 따른 환경영향 및 효율에 관한 연구 역시 미흡하다. 따라서 본 연구는 국내에 분포하는 흰개미 중 일본흰개미(Reticulitermes speratus kyushuensis Morimoto)를 대상으로 흰개미가 주로 섭식하는 폐목재를 먹이로 주어 사육하였을 때, 생산되는 오일과 식용의 온실가스 발생량과 탄소와 질소의 순환효율을 정량화하여 흰개미를 산업용으로서 활용하는 것에 대한 타당성과 전체 탄소와 질소의 물질흐름에 있어서 환경적・경제적 이점을 정량화하고자 하였다.