In order to evaluate the exposure dose of residents living near nuclear power plants, a Off-site Dose Calculation Program (ODCP) has been developed based on SAP since 2021. The ODCP consists of social environmental factor, atmospheric diffusion factors, liquid/gas dose evaluation, and comprehensive analysis, and was developed by dividing it into functional modules. The offsite dose calculation can be carried out monthly, quarterly, semi-annual, and annual, and resident dose evaluation is conducted by entering air diffusion factors and emissions for each period. It also enables comprehensive evaluation result management by developing history management functions together.
In 2022, new regulatory guidelines were announced in relation to the off-site dose calculation (ODC), and accordingly, measures to improve the off-site does calculation program (ODCP), kdose60, were reviewed. The main consideration is, first, that if multiple nuclear facilities are operated on the same site, the boundaries of the restricted areas shall be set as the overlapping outer boundaries of the restricted areas determined by calculation for each nuclear facility. Second, the external exposure caused by direct radiation from a number of nuclear facilities in the same site must be partially or fully applied depending on the facility and site characteristics. Third, the dose conversion coefficient should be evaluated by checking whether the effect of the daughter nuclides is properly reflected. Fourth, the soil contamination period is a factor to consider that radioactive substances deposited on the surface, such as particulate nuclides, affect residents over a long period of time. Fifth, due to the recent construction of Shin-Kori Units 5 and 6, there is a change in the site boundary of the Kori/Saeul site, so as the site boundary is expanded, it is required to add an exposure dose assessment point due to gas effluents and change the exposure dose assessment point according to crop intake. Therefore, through this study, the direction for improving the ODCP will be prepared by reviewing the recent revision of the regulatory guidelines.
In accordance with the notification of the Nuclear Safety and Security Commission (NSSC), environmental impact assessments around nuclear power plants are conducted annually and the results are disclosed to the public. KHNP evaluates the dose of residents around nuclear power plants using the K-DOSE60 program that reflects ICRP-60. K-DOSE60 calculates the expected exposure dose for residents by modifying the atmospheric dispersion and deposition factors evaluation module (XOQDOQ), gaseous effluent evaluation module (GASDOS) and liquid effluent evaluation module (LIQDOS) developed by the US NRC. The current evaluation program is the Bounding Assessments method, which evaluates under the assumption that residents reside at the exclusion area boundary (EAB), and has a disadvantage in that the estimated exposure dose is evaluated too conservatively. In the EPRI, instead of the conservative method that is conventionally performed for the residents’ dose evaluation method, a plan to improve the accuracy of the dose evaluation reflecting the site characteristics was reviewed. In addition, improvements were derived through the review of NPPs operation status, experience cases and the latest technology.
The off-site dose calculation is regularly carried out at the nuclear power plants in order to evaluate off-site dose from gaseous and liquid effluent during normal operation. In 2009, the off-site calculation program (K-DOSE60) was developed in accordance with ICRP-60 by KHNP. This software needs meteorological data, gaseous and liquid effluent data, and various other input parameters to evaluate off-site dose. As a result, it takes a certain amount of time for the user to enter accurate input data and verify calculated results, and it is difficult to intuitively determine them because of providing textbased calculated results. Therefore, in this study, the improvement of the calculation program was considered so that a more reliable and effective evaluation could be performed when calculating the off-site dose. The main improvements of the off-site dose calculation program (ODCP) are as follows. First, it is developed as the network-based program to link with meteorological data, and gaseous and liquid effluent data to remove input errors and simplify data transfer. Second, through validation process of input data, input errors are eliminated. Third, the input data and calculated results are visually provided so that the user can easily determine the evaluation results. Fourth, database of input and calculated results is constructed to facilitate evaluation result history management.