물은 22.1 MPa의 압력하에 100℃ - 374℃의 온도범위에서 액체상태로 존재하며, 이를 아임계수라 한다. 아임계수 조건에서 물은 분자간 수소결합이 약해지면서 유전상수, 점성, 표면장력이 감소되어 유기용매와 유사한 특성을 지니게 된다. 원유오염토양은 전남 여수지역 공단 내에 있는 유류로 오염된 토양을 이용하였으며, 오염기간은 약 1년이며 저분자성 휘발유류성분 및 고분자성 유류로 오염되어 있었다. 초기 오염된 TPH농도는 16,895 mg/kg였다. 원유오염토양은 고분자성 물질이 다량 함유되어 있어 기존정화방법으로는 처리하기 어려운 점이 있다. 이를 해결하기 위하여 상기 아임계수 특성을 이용하여 원유로 오염된 토양으로부터 오염물질을 추출하는 연구를 수행하였다. 이와 함께 친유성 용매인 등유를 이용하여 토양으로부터 원유 일부를 탈착(전처리)시킨 후, 아임계수로 토양 내에 잔류되어 있는 유류성분을 제거하는 실험도 수행하였다. 이를 통해 아임계수 추출만을 적용하였을 경우와 등유 전처리가 추가된 경우의 제거율과 정화공정상 효율을 비교하였다. 아임계수 추출 시 275℃에서 2시간 추출을 5회 반복 진행하였을 때, 토양 내의 잔류 유류 농도가 498 mg/kg(제거율 97%)로 나타났다. 등유 전처리(토양 : 등유=1 : 0.5 wt%)후 아임계수 적용시 250℃에서 1시간동안 추출 시, 토양 내 잔류 유류 농도는 223 mg/kg로 나타났다. 적용된 두가지 공정 모두 토양1지역 우려기준(500mg/kg)이하로 정화되었으나, 상대적으로 등유전처리가 포함된 공정이 아임계수 기술만을 적용하여 추출을 진행한 것보다 상대적으로 높은 제거율을 보였다. 또한 등유 전처리가 추가된 아임계 공정이 추출시간, 공정수, 투입에너지(가열)에 있어 경제적으로 판단되며, 따라서 원유 오염토양의 아임계수 정화공정에서는 등유전처리 도입이 효과적인 것으로 판단된다.
The objectives of this study are to examine the processing of oils contamination soil by means of using a micronano-bubble soil washing system, to investigate the various factors such as washing periods, the amount of micro-nano bubbles generated depending on the quantity of acid injection and quantity of air injection, to examine the features involved in the elimination of total petroleum hydrocarbons (TPHs) contained in the soil, and thus to evaluate the possibility of practical application on the field for the economic feasibility.
The oils contaminated soil used in this study was collected from the 0~15 cm surface layer of an automobile junkyard located in U City.
The collected soil was air-dried for 24 hours, and then the large particles and other substances contained in the soil were eliminated and filtered through sieve No.10 (2 mm) to secure consistency in the samples. The TPH concentration of the contaminated soil was found to be 4,914~5,998 mg/kg.
The micronano-bubble soil washing system consists of the reactor, the flow equalization tank, the micronano- bubble generator, the pump and the strainer, and was manufactured with stainless material for withstanding acidic phase.
When the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 30 minutes were respectively identified as 4,931 mg/kg (18.9%), 4,678 mg/kg (18.9%) and, 4,513 mg/kg (17.7%). And when the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 120 minutes were respectively identified as4,256 mg/kg (22.3%), 4,621 mg/kg (19.7%) and 4,268 mg/kg (25.9%).
Fifty hydrocarbon-metabolizing microorganisms were isolated from soil samples polluted by the petroleum oils in Gamman-dong, Busan. Among them, strain 2-3A, showing strong emulsification activity, was selected by oil film-collapsing method. This bacterium was identified as Acinetobacter sp. and designated as Acinetobacter sp. 2-3A. The optimum temperature and pH on the growth of Acinetobacter sp. 2-3A were 25℃ and pH 7.0, respectively. The carbon and nitrogen sources for the most effective emulsification activity were 3.0% olive oil and 0.5% peptone, respectively. The 0.15% potassium phosphate was the most effective emulsification activity as a phosphate source. The optimum emulsification activity condition was 20℃, pH 7.0, and 2.0% NaCl. The optimum time for the best production of biosurfactant was 27 hrs. The emulsification stability was maintained at the temperature range from 4℃ to 100℃, pH range from 6.0 to 10.0, and NaCl range from 0% to 10%. For the oil resolvability of the biosurfactant, the residual oils were investigated by gas chromatography. As a result, it was verified that the biosurfactant decreased and decomposed crude oils from nC10 to nC32.