The design shear strength equations of RC shear walls have been developed based on their performance under in-plane (IP) loads, thereby failing to account for the potential performance degradation of shear strength when subjected to simultaneous out-of-plane (OOP) loading. Most of the previous experimental studies on RC walls have been conducted in one direction under quasi-static conditions, and due to the difficulty in experimental planning, there is a lack of research on cyclic loading and results under multi-axial loading conditions. During an earthquake, shear walls may yield earlier than their design strength or fail unexpectedly when subjected to multi-directional forces, deviating from their intended failure mode. In this paper, nonlinear analysis in finite element models was performed based on the results of cyclic loading experiments on reinforced concrete shear walls of auxiliary buildings. To investigate the reduction trend in IP shear capacity concerning the OOP load ratio, parametric analysis was conducted using the shear wall FEM. The analysis results showed that as the magnitude of the OOP load increased, the IP strength decreased, with a more significant effect observed as the size of the opening increased. Thus, the necessity to incorporate this strength reduction as a factor for the OOP load effect in the wall design strength equation should be discussed by performing various parametric studies.
곡선보(curved beam)의 회전관성(rotatory inertia) 및 전단변형(shear deformation)을 고려한 면외(out-of-plane) 자유진동을 해석하는데 미분구적법(DQM)을 이용하여 고정-고정 경계조건(boundary conditions)과 다양한 굽힘각(opening angles)에 따른 진동수(frequencies)를 계산하였다. DQM의 결과는 엄밀해(efact solution) 또는 다른 수치해석 결과와 비교하였으며, DQM은 적은 요소(grid points)를 사용하여 정확한 해석결과를 보여주었다.