검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe-based oxide dispersion strengthened (ODS) powders were produced by high energy ball milling, fol- lowed by spark plasma sintering (SPS) for consolidation. The mixed powders of 84Fe-14Cr-2Y2O3 (wt%) were mechanically milled for 10 and 90 mins, and then consolidated at different temperatures (900~1100o C). Mechani- cally-Alloyed (MAed) particles were examined by means of cross-sectional images using scanning electron micros- copy (SEM). Both mechanical alloying and sintering behavior was investigated by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM). To confirm the thermal behavior of Y2O3, a replica method was applied after the SPS process. From the SEM observation, MAed powders milled for 10 min showed a lamella structure consisting of rich regions of Fe and Cr, while both regions were fully alloyed after 90 min. The results of sintering behavior clearly indicate that as the SPS temperature increased, micro-sized defects decreased and the den- sity of consolidated ODS alloys increased. TEM images revealed that precipitates smaller than 50 nm consisted of YCrO3.
        4,000원
        2.
        2010.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two kinds of oxide-dispersion-strengthened (ODS) 316L stainless steel were manufactured using a wet mixing process(wet) and a mechanical alloying method (MA). An MA 316L ODS was prepared by a mixing of metal powder and a mechanical alloying process. A wet 316L ODS was manufactured by a wet mixing with 316L stainless steel powder. A solution of yttrium nitrate was dried after being in the wet 316L ODS alloy. The results showed that carbon and oxygen were effectively reduced during the degassing process before the hydroisostatic process (HIP) in both alloys. It appeared that the effect of HIP treatment on increase in impact energy was pronounced in the MA 316L ODS alloy. The MA 316L ODS alloy showed a higher yield strength and a smaller elongation, when compared to the wet 316L ODS alloy. This seemed to be attributed to the enhancement of bonding between oxide and matrix particles from HIP and to the presence of a finer oxide of about 20 nm from the MA process in the MA 316L ODS alloy.
        4,000원