The periodic safety review (PSR), for all operating nuclear power plants in Korea, has been conducted in accordance with SSG-25, a guideline suggested by the IAEA, The PSR is performed through the review of the regulatory body after the operator’s self-evaluation. In order to guarantee a high level of safety in consideration of the changed environment, such as operating experience (OE) and technology development, it should be comprehensively and integratedly performed, and it is also carried out every 10 years after the operation permit. However, in case that all or part of the reactor facilities have been permanently shut down, such as Kori Unit 1 and Wolsong Unit 1, Around a half of reactor facilities are not in operation. The periodic safety evaluation may not be conducted for unused parts if there is no safety hazard and if there are some difficulties for applying periodic safety evaluation. In considering that the biggest purpose of PSR safety (by PSR definition of KINS guideline) is to improve and accumulated factors such as aging deterioration, facility change, operation experience, and technological development for operating nuclear power plants. It refers to a comprehensive safety evaluation that is periodically performed during the period of operation of a nuclear power plant. It is necessary to review whether PSR should be performed for a nuclear power plant that is permanently shut down after nuclear power plant operation is terminated. Also, in IAEA SSR 2/2 Rev1, it is defined that PSR is performed during the nuclear power plant operation period. “Requirement 12: Periodic safety review, Systematic safety assessments of the plant, in accordance with the regulatory requirements, shall be performed by the operating organization throughout the plant’s operating lifetime, with due account taken of operating experience and significant new safety related information from all relevant sources”. Recently, Kori Unit 1 and Wolsong Unit 1 were decided to permanently shut down in June 2017 and December 2019, and are currently being prepared for decommissioning. According to the Wolsong decommissioning plan, decontamination and demolition will be completed by 2032. The PSR for permanent shutdown of Kori Unit 1 was submitted to the regulatory body in December 2018 and is under approval review. In the case of the permanent shutdown PSR of Wolsong Unit 1, the project will be launched in May 2023 and the PSR will be submitted to the regulatory body in May 2024. In the case of Wolsong Unit 1, it is necessary to operate the various systems, including the systems related to the spent fuel storage tank, even during the period of permanent shutdown. Such as the heavy water related systems used in common with Wolsong Unit 2, are essential operating systems. Based on Basic Subject Index (BSI), 112 out of 218 systems require operation, indicating that about 50% of systems require operation even after permanent shutdown. Decommissioning of systems and equipment will begin after the transfer to modular air-cooled canister storage (MACSTOR) by the end of 2025, and then in-depth discussions will be needed whether PSR evaluation is meaningful.
We report X-ray timing and spectral properties of the pulsar PSR J0205+6449 measured using NuSTAR and Chandra observatories. We measure the pulsar's rotation frequency v = 15:20102357(9) s-1 and its derivative v = -4.5(1) X 10-11 s-2 during the observation period, and model the 2~30 keV on-pulse spectrum of the pulsar with a power law having a photon index Γpsr = 1.07 ± 0.16 and a 2~30 keV flux F2-30 keV = 7.3±0.6 X 10-13 erg cm-2 s-1. The Chandra 0.5-10 keV data are analyzed for an investigation of the pulsar's thermal emission properties. We use thermal and non-thermal emission models to t the Chandra spectra and infer the surface temperature T1 and luminosity Lth of the neutron star to be T∞ = 0.5 - 0.8 MK and Lth = 1 - 5 X 1032 erg s-1. This agrees with previous results which indicated that PSR J0205+6449 has a low surface temperature and luminosity for its age of 800{5600 yrs.
We report on the timing properties of the ‘Crab twin’ pulsar PSR B0540−69 measured with X-ray data taken with the Swift telescope over a period of 1100 days. The braking index of the pulsar was estimated to be n = 0.03±0.013 in a previous study performed in 2015 with 500-day Swift data. This small value of n is unusual for pulsars, and a comparison with an old estimate of n ≈ 2.1 for the same target determined ∼10 years earlier suggests a dramatic change in the braking index. To confirm the small value and therefore the large change of n, we used 1100-day Swift observations including the data used in the earlier determination of n = 0.03. In this study we find that the braking index of PSR B0540−69 is n = 0.163 ± 0.001, somewhat larger than 0.03. Since the measured value of n is still much smaller than 2.1, we can confirm the dramatic change in the braking index for this pulsar.
The paternal sex ratio (PSR) chromosome is considered as an extremely selfish genetic element. It has only been found in the two hymenopteran insects- Nasonia and Trichogramma- with haplodiploid sex determination. When an egg is fertilized by sperm bearing PSR, the paternal genome is destroyed by PSR soon after fertilization resulting in haploid restoration and the egg develops into a male with only the maternal genome and PSR itself. Recently PSR is paid much attention, since it may be used for controlling haplodiploid pests.
PSR can be successfully transferred from its natural host, T. kaykai to the novel host, T. deion. In the two hosts another sex ratio distorter, Wolbachia, is found. Wolbachia is a cytoplasmically inherited bacterium that induces parthenogenesis in this genus resulting in female offspring production without fertilization.
The transmission efficiency of PSR in T. deion is lower than that in T. kaykai and is negatively influenced by the Wolbachia infection. The results show that 1) there is a negative host genetic background effect on the transmission of PSR in the novel host, 2) the transmission efficiency becomes even lower, when PSR males are infected with Wolbachia. The results imply that complex interactions among the bacterium, PSR and the species specific genetic background.
The purpose of the research is to discuss the product safety procedures for the food industry The producer and supplier of the products should satisfy the increasing consumer safety needs. To develop and produce safe products, the food industry must rigorously perform potential hazard findings and very thorough risk analysis to detect even the very minute potential danger. The ultimate product liability rests with the consumer safety and the manufacturer's capability which competes in the market places. This is especially important in the food industry. However, small to medium sized food producing companies are facing challenges in this area due to their overall capabilities. Therefore this research presents safety procedures which are relatively simple to implement.
The purpose of the research is to discuss the product safety procedures for the food area. The producer and supplies of the products should be able to satisfy the needs of the increasing consumer safety. The products, for the purpose of developing and making safe products, must perform Hazard Finding and Risk Analysis to detect potential danger to mike sure the final safety measures are in place. The purpose of Product liability rests finally with the consumer safety and the manufacturer's capability compete in the marketplace. Especially this is important for the food industry. But, our domestic middle and small food industries, it is relatively weak in this are. Thus this research would like to present a easily usable product safety procedures.
We use the outer gap model to explain the spectrum and the energy dependent light curves of the X-ray and soft γ-rayradiations of the spin-down powered pulsar PSR B1509-58. In the outer gap model, most pairs inside the gap are createdaround the null charge surface and the gap’s electric field separates the opposite charges to move in opposite directions.Consequently, the region from the null charge surface to the light cylinder is dominated by the outflow current and that fromthe null charge surface to the star is dominated by the inflow current. We suggest that the viewing angle of PSR B1509-58 onlyreceives the inflow radiation. The incoming curvature photons are converted to pairs by the strong magnetic field of the star.The X-rays and soft γ-rays of PSR B1509-58 result from the synchrotron radiation of these pairs. The magnetic pair creationrequires a large pitch angle, which makes the pulse profile of the synchrotron radiation distinct from that of the curvatureradiation. We carefully trace the pulse profiles of the synchrotron radiation with different pitch angles. We find that thedifferences between the light curves of different energy bands are due to the different pitch angles of the secondary pairs, andthe second peak appearing at E > 10 MeV comes from the region near the star, where the stronger magnetic field allows thepair creation to happen with a smaller pitch angle.