N-propyl-N,N-dimethylethanolamine의 용액을 만들기 위해 산성 조건 하에서 6분간 초음 파처리하여 제조하였다. N-propyl-N,N-dimethylethanolamine 의 촉매 가수분해는 온도 30~55 ℃에 서 uni-lamellar vesicle과 uni-lamellar와 multi-lamellar가 뭉쳐진 혼합물에서 연구되었다. 이들의 차 이는 촉매효과에 대해 multi-lamellar보다 uni-lamellar에서 영향이 크게 나타났다. Vesicle의 상전이 온 도는 37~44 ℃이며, multi-lamellar의 분자 입자의 크기는 uni-lamellar의 입자의 크기보다 크게 나타 났다.
N-propyl-N,N-dimethylethanolamine의 용액을 만들기 위해 산성 조건 하에서 6분간 초음 파처리하여 제조하였다. N-propyl-N,N-dimethylethanolamine 의 촉매 가수분해는 온도 30~55 ℃에 서 uni-lamellar vesicle과 uni-lamellar와 multi-lamellar가 뭉쳐진 혼합물에서 연구되었다. 이들의 차 이는 촉매효과에 대해 multi-lamellar보다 uni-lamellar에서 영향이 크게 나타났다. Vesicle의 상전이 온 도는 37~44 ℃이며, multi-lamellar의 분자 입자의 크기는 uni-lamellar의 입자의 크기보다 크게 나타 났다.
본 연구는 과학적 소양은 과학적 지식의 획득과 과학적 담화에 참여할 수 있는 언어적 능력을 통하여 길러진다는 전제하에 대기 중의 물의 상태변화에 관한 학생 글에서 나타나는 의미관계와 과학 언어적 특징을 알아보았다. 중학교 3학년 학생 67명이 참여하여 일상생활에서 흔히 경험할 수 있는 현상과 학교과학교육에서 체계적으로 배우는 현상 에 관한 두 개의 서술형 문항에 대한 글을 작성하였다. 연구의 결과 학생들은 '이슬점' 같은 생소한 용어뿐만 아니라 '수증기', '김' 등과 같은 친숙한 용어에 대해서도 잘못된 의미관계를 형성하고 있었고, 학교과학 교육보다 일상의 경험에서 형성된 지식에서 옳은 의미관계와 잘못된 의미관계 모두 더 많이 나타났다. 일상의 과학적 현상에 대해서는 행위와 절차를 중심으로 한 서술 양상이, 학교 교육에 의해 접하게 된 현상에 대해서는 전문용어와 명사구의 사용 양상이 보였다. 본 연구를 통하여 경험에 기초한 자발적 과정은 풍부한 의미관계 형성에, 형식적이고 이론적인 과정은 명사화를 중심으로 한 전문적이고 추상적인 서술의 측면에서 과학적 언어 능력 발달에 기여함을 알 수 있었다.
LiMn2O4 catalyst for CO2 decomposition was synthesized by oxidation method for 30 min at 600℃ in an electric furnace under air condition using manganese(II) nitrate (Mn(NO3)2·6H2O), Lithium nitrate (LiNO3) and Urea (CO(NH2)2). The synthesized catalyst was reduced by H2 at various temperatures for 3 hr. The reduction degree of the reduced catalysts were measured using the TGA. And then CO2 decomposition rate was measured using the reduced catalysts. Phase-transitions of the catalysts were observed after CO2 decomposition reaction at an optimal decomposition temperature. As the result of X-ray powder diffraction analysis, the synthesized catalyst was confirmed that the catalyst has the spinel structure, and also confirmed that when it was reduced by H2, the phase of LiMn2O4 catalyst was transformed into Li2MnO3 and Li1-2δMn2-δO4-3δ-δ' of tetragonal spinel phase. After CO2 decomposition reaction, it was confirmed that the peak of LiMn2O4 of spinel phase. The optimal reduction temperature of the catalyst with H2 was confirmed to be 450℃(maximum weight-increasing ratio 9.47%) in the case of LiMn2O4 through the TGA analysis. Decomposition rate(%) using the LiMn2O4 catalyst showed the 67%. The crystal structure of the synthesized LiMn2O4 observed with a scanning electron microscope(SEM) shows cubic form. After reduction, LiMn2O4 catalyst became condensed each other to form interface. It was confirmed that after CO2 decomposition, crystal structure of LiMn2O4 catalyst showed that its particle grew up more than that of reduction. Phase-transition by reduction and CO2 decomposition ; Li2MnO3 and Li1-2δMn2-δO4-3δ-δ' of tetragonal spinel phase at the first time of CO2 decomposition appear like the same as the above contents. Phase-transition at 2~5 time ; Li2MnO3 and Li1-2δMn2-δO4-3δ-δ' of tetragonal spinel phase by reduction and LiMn2O4 of spinel phase after CO2 decomposition appear like the same as the first time case. The result of the TGA analysis by catalyst reduction ; The first time, weight of reduced catalyst increased by 9.47%, for 2~5 times, weight of reduced catalyst increased by average 2.3% But, in any time, there is little difference in the decomposition ratio of CO2. That is to say, at the first time, it showed 67% in CO2 decomposition rate and after 5 times reaction of CO2 decomposition, it showed 67% nearly the same as the first time.
비정량적 조성을 가진 비정질 산화타이타늄 박막을 반응성 스퍼터링으로 제조한후, 500˚C~600˚C에서 10분-3시간 열처리후 냉각속도를 달리하였을 때의 상변태과정을 고찰하였다. 10분-30분정도의 단기간의 열처리후 급냉한 경우에는 Mageneli상이 관찰되어 비정상정 상(TiO2-x)이 산화되는 속도가 결정화속도보다 훨씬 느린 것으로 생각되었다. 그러나 열처리 유지시간이 증가하면 500˚C에서 부터의 느린 냉각과정에서는 Magneil가 anatase로 변화하며 변태한 anatase는 저온에서는 rutile로 변화하지 않았으나 500˚C~300˚C의 온도 구간을 비교적 빠르게 냉각하면 Matneli상은 직접 rutile상으로 변화할 수 있는 것으로 고찰되었다. 또한 600˚C에서 냉각시에도 rutile상이 형성됨으로서 rutile상은 500˚C이상의 고온에서도 이 상ㅇ르 거치지 않고 변태할 수 있는 것으로 분석된다. 결정화 및 산화과정은 부피의 변화를 야기하여 박막의 표면 형상의 변화도 가져옴이 관찰되었다.
자로사이트 내의 SO4는 다른 산화음이온으로 치환될 수 있는데 자로사이트가 침철석으로 전이되는 과정은 공침된 산화음이온의 거동에 중요한 역할을 하게 된다. 본 연구에서는 다양한 산화음이온과 함께 공침된 자로사이트가 환원성 용해에 의하여 상변화를 거칠 때 산화음이온 종에 따른 상변화의 양상과 이와 수반된 산화음이온의 거동을 광물학적 및 지구화학적으로 연구하였다. 다섯 가지의 산화음이온이 SO4를 5 몰% 치환한 자로사이트가 본 연구에 사용되었다. 본 연구에서는 암모늄 옥살레이트를 이용한 환원성 용해 시 일어나는 자로사이트의 광물상의 변화를 측정하였으며 자로사이트의 침철석으로의 전이 속도는 MoO4-자로사이트 ≥ SeO4-자로사이트 ≥ CrO4-자로사이트 > 순수한 자로사이트 > SeO3-자로사이트 > AsO4-자로사이트의 순서를 보여 치환된 산화음이온에 따라서 자로사이트의 상전이 속도가 다름을 보여주었다. 이에 따른 Fe의 용출은 시간과 산화음이온의 종류에 따라 큰 차이를 보이지 않았다. 광물의 변화에 따라 용출되어져서 나온 각 산화 음이온의 농도는 전체적으로 Mo > Se(SeO3) > As > Se(SeO4) > Cr의 농도 순위를 보였으며 시간에 따라 약 간의 증가를 보였다. 이러한 경향은 광물상의 변화보다는 산화음이온 종류의 특성에 의한 것으로 파악된다. 본 연구 결과는 산화음이온의 종류에 따라 자로사이트의 침철석으로의 변화는 영향이 있었으나 이러한 경향이 용출되는 산화음이온의 농도에 영향을 미치지 않음을 보여주었다.
지금까지 기재되지 않았던 새로운 tridymite의 동질다형상의 하나로 비조화 변조상("IC상")을 확인하였다. IC상의 격자형은 L1상과 같은 대칭성을 가진 단사정계(Bb)로 분석되나, 기하학적인 격자 구조는 오히려 L3샅의 바탕 구조와 같으며 L3상과는 다른 형태의 변조구조를 갖는다(변조 벡터 q=0.22 c*H ; λ 37 ).편, Ll상의 전자 회절도형에서 보여주는 독특한 분산 회절곡선은 원자 특히 산소 원자의 동적 비배열(dynamic disorder)이 상온에서도 일어날 수 있음을 암시해 준다. Tridymite 시료의 분쇄에 의한 Ll상에서 L3상으로의 상전이는 점진적이기는 하나 매우 두드러지게 일어난다: Ll→LI+IC→IC+L3→L3. 그러나, 분쇄에 의한 상전이의 구체적인 과정은 각 입자의 국부적인 응력 상태와 미세구조의 발달 상태와 밀접한 관련이 있음이 이번 연구를 통해 드러났다.