A phenylboric acid functionalized carbon dot (2-FPBA-CD) for rapid fluorescent sensing of glucose in blood was synthesized by simply mixing N, S-doped carbon dots (CDs) with phenylboric acid at room temperature. At pH 7.4, the response of 2-FPBA-CD to glucose could reach equilibrium in a very short time (10 min), with a wide responsive linear range of 19.70 μM to 2.54 mM, which can be applied to the detection of glucose in serum. The mechanism studies showed that the layered carbon film of 2-FPBA-CD aggregated after adding glucose, thereby leading to the fluorescence quenching of 2-FPBA-CD.
Wide-area surface decontamination is essential during the sudden release of radioisotopes to the public, such as nuclear accidents or terrorist attacks. A spray coating composed of a reversible complex between poly (vinyl alcohol) (PVA) and phenylboronic acid-grafted poly (methyl vinyl ether-alt-mono-sodium maleate) (PBA–g–PMVE–SM) was developed to remove radioactive cesium from surfaces. The simultaneous spay of PVA and PBA–g–PMVE–SM aqueous polymer solutions containing Cs adsorbent to contaminated surfaces resulted in the spontaneous formation of a PBA–diol ester bond-based gel-like coating. The Cs adsorbent suspended in the gel-like coating selectively removed Cs-137 from the Cs-contaminated surface. The used gel-like coating were removed from surfaces by simple water rinsing. This recovery way has advantages compared with costly incineration to remove the organic materials for final disposal/storage of the radioactive waste. Thus, our spray coating is suitable for practical wide-area surface decontamination. In radioactive tests, the hydrogel containing Cs-adsorbent showed substantial Cs-137 removal efficiencies of 96.996% for painted cement and 63.404% for cement, which are 2.33 times better than the values for the commercial surface decontamination coating agent DeconGel.
Wide-area surface decontamination is essential in the emergency situation of release of radioisotopes to public such as nuclear accident or terrorist attack. Here, a self-generated hydrogel based on the reversible complex between poly (vinyl alcohol) (PVA) and phenylboronic acid-grafted poly (methyl vinyl ether-alt-mono-sodium maleate) (PBA-g-PVM-SM) was developed to remove the radioactive cesium from surface. Two aqueous polymeric solutions of PVA and PBA-g-PVM-SM containing sulfur-zeolite were simultaneously applied to surfaces, which subsequently self-generated a hydrogel based on the PBA-diol ester bond. The sulfur-zeolite suspended in hydrogel selectively remove the 137Cs from contaminated surface and easily separated from the dissociable used hydrogel by simple water rinsing. In radioactive tests, the resulting hydrogel containing sulfur-chabazite displayed high 137Cs removal efficiencies of 96.996% for painted cement and 63.404% for cement, which was 2.33 times higher than that of commercial strippable coating (Decongel). Considering the intrinsic various ion-exchange ability of zeolite, our hydrogel system has the excellent potential for the effective removal of various hazardous contamination including radionuclides from the surface.