We propose a method for developing an in-pipe inspection robot based on multiple inertial sensors. Estimating the position of underground pipelines where satellite signals do not reach remains challenging. High-precision inertial sensors and high-tech mobile robots can be solutions, but their high price limits their general use. We developed an in-pipe inspection robot by combining various low-cost sensors with a microcomputer-based RC car platform. First, we fabricated a multi-inertial sensors module by combining commercial grade low-cost MEMS inertial sensors. The sensor values measured by the multi-inertial sensor are transmitted to the main computer through the MCU, and the attitude angle of the vehicle is finally calculated through the inverse variance weighted average. The travel distance of the robot is estimated by using hall sensors and neodymium magnets attached to the inside of the wheels. Also, we measured the pipe diameter using multiple ultrasonic sensors. We verified the estimation accuracy of each sensor through experiments and consequently estimated the 3D trajectory of the in-pipe robot.
Due to the sewer induced ground subsidence, there is an increasing demand for the advanced visual inspection technique for the existing sewer pipe structures. This study aim to develop a visual inspection device and real-time transmission system of inspection data with precisely evaluated structural and operational conditions of underground sewer pipe structures. In this paper, a high-precision image capturing system that automatically extracts cracks in the large-diameter sewer pipes and sewage culverts with a diameter of 1,000 mm or more, a real-time gas detection sensor for investigator safety were studied. By analyzing the module technology of the visual inspection device, the concept design for system integration was derived, and the real time transmission system of the inspection result was developed to establish the technical basis for the commercialized device. Also the crack detection test using crack calibration was carried out for the proposed image capturing camera system, and the position accuracy using L1 grade GPS module was tested in this study. The inspection technique of the existing structure condition using the visual inspection device in this study can be effectively used for various structures types and advanced composite structures in the future.
Sewer condition assessment involves the determination of defective points and status of aged sewers by a CCTV inspection according to the standard manual. Therefore, it is important to establish a reliable and effective standard manual for identifying the sewer defect. In this study, analytic reviews of the CCTV inspection manuals of the UK, New Zealand, Canada and South Korea were performed in order to compare the defect codes and the protocols of condition assessment. Through this, we also established the standardized method for defect code and revised the calculation method of assigning the condition grade. Analyses of the types and frequencies of sewer defects that obtained by CCTV inspection of 7000 case results, showed that the joint defect and lateral defect were the most frequent defects that occurred in Korea. Some defect codes are found to be modified because those did not occur at all. This study includes a proposed new sewer defect codes based on sewer characteristics.