올레핀/파라핀 분리를 위해 poly(ethylene oxide)(PEO)/Ag nanoparticles (AgNPs)(전구체: AgBF4)/p-benzoquinone (p-BQ) 복합막이 제조되었으며, 이 복합체 분리막의 성능은 100시간까지 선택도 10과 투과도 15 GPU로 유지되는 것이 관찰 되었다. 분리막의 성능이 100시간까지 유지할 수 있었던 이유는 p-BQ의 첨가로 인해 Ag ion이 안정적으로 Ag nanoparticles 로 형성될 수 있었을 뿐더러 전자수용체인 p-BQ으로 인해 표면이 부분 양극성화 되어 올레핀 운반체로서 역할을 성공적으로 수행한 결과라 생각되었다. 본 연구에서는 Ag nanoparticles의 전구체로 사용된 AgBF4의 가격이 고가이기 때문에 가격 측면에서 유리한 AgNO3 Ag nanoparticles의 전구체로 사용하여 실험을 진행하였다. 그 결과로서 AgNO3의 경우에는 앞선 AgBF4 과는 다르게 안정적으로 은 나노입자가 형성되지 못하고 이로 인하여 좋은 성능을 내지 못하는 것으로 분석되었다.
올레핀/파라핀 분리를 위해 Poly(ethylene oxide)(PEO)/AgBF4/Al(NO3)3/Ag2O 복합막이 제조되었으며, Ag2O가 도 입되었을 때, 복합체 분리막의 초기성능은 선택도 13.7과 투과도 21.7 GPU로 관찰되었다. PEO/AgBF4/Al(NO3)3 분리막의 성 능(선택도 13와 투과도 7.5 GPU)에 비해서 초기성능이 증가한 이유는 Ag2O의 첨가로 인한 Ag ion의 활성도 증가로 생각되 었다. 하지만 시간에 따른 성능저하 현상이 관찰되었는데 이는 고분자 matrix인 PEO 때문인 것으로 생각되었다. PEO 고분자 는 Ag2O 입자를 안정화 시킬 수 없기 때문에 용매가 증발하면서 Ag2O 입자끼리 뭉치게 되고, Ag2O가 barrier 역할을 하게 돼서 시간이 지나면 투과도가 감소하는 것으로 분석되었다.
철강산업 부생가스 중 파이넥스 공정에서 발생하는 FOG는 CO2 (46.6%) 및 CO (30.3%)로 구성되어 있으며, 이들은 주로 저효율 열원으로 사용되고 있다. 고순도의 CO2와 CO는 화학원료로 사용 할 수 있기 때문에 이들을 효율적으로 분리할 경우 온실가스 절감 및 고부가가치의 제품을 생산할 수 있다. 본 연구에서는 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic (DOCDA)와 4,4'-Oxydianiline (ODA)를 이용하여 선택성이 우수한 DOCDA-ODA 폴리이미드를 합성하였고, 이산화탄소의 투과성을 향상시키기 위해 이산화탄소 친화성이 좋은 폴리에틸렌옥사이드를 DOCDA-ODA에 도입하여 폴리이미드 공중합체를 합성하였다.
본 연구에서는 poly(ethylene oxide) (PEO)와 poly(ethylene-co-vinyl acetate) (EVA) 혼합으로 구성된 막을 통한 단일기체(N2, O2, CO2)의 투과 성질을 조사하였다. FT-IR 분석 결과 제조된 막에서 새로운 흡수피크는 보이지 않았는데, 이 것은 PEO와 EVA가 물리적으로 혼합되었음을 나타낸다. SEM 관찰에서는 PEO/EVA 혼합 매트릭스에서 EVA 함량이 증가 함에 따라 PEO의 결정상이 감소함을 보여 주었다. DSC 분석결과 PEO/EVA 혼합막의 결정화도는 EVA 함량이 증가함에 따 라 감소하였다. 기체투과 실험은 4~8 bar의 공급압력에서 이루어졌다. PEO/EVA 혼합막에서 CO2의 투과도는 공급 압력 증 가에 따라 증가하였다. 그러나 N2와 O2의 투과도는 공급 압력에 무관하였다. 반면에, PEO/ EVA 혼합막의 모든 기체의 투과 도는 반결정성 PEO에서 무정형 EVA의 함량이 증가함에 따라 증가하였다. 특히, 40 wt% EVA 혼합막은 64 Barrer의 CO2 투과도와 61.5의 CO2/N2 이상선택도를 보였다. 높은 CO2 투과도와 CO2/N2 이상선택도는 PEO의 극성 에테르기 또는 EVA의 극성 에스터기와 극성 CO2 간의 강한 친화성에 기인한다.
탄소나노튜브(MWCNT)는 그 구조적 특징에 따라 열적, 기계적 안정성이 우수하며 고분자 매트릭스 내에 소량만 첨가하여도 향상된 물성을 얻을 수 있다. 그러나 탄소나노튜브를 고분자 복합체에 응용 시 분산이 필수적으로 요구되기 때문에 전처리 기술이 필요하다. 본 연구에서는 PEO 막의 CO2 투과도 향상을 위해 PEO/EVA 혼합물에 산처리를 통해 표면에 친수성기가 도입된 다중벽 탄소나노튜브(MWCNT-COOH)를 첨가하여 PEO/EVA/MWCNT 혼성막을 제조하였다. 제조된 혼성막의 특성을 FT-IR, TGA, SEM 분석으로 확인하였다.
본 연구에서는 Chloroform에 Poly(ethylene oxide) (PEO)와 poly(ethylene-co-vinyl acetate) (EVA)를 10%(w/v)로 용해시켜 glass plate에 캐스팅한 후 상온에 방치하여 용매를 완전히 날린 후 70℃에서 24시간 이상 건조시켰다. Blend 조성은 PEO/EVAc-1(wt/wt) 80/20, 60/40, 40/60, 20/80으로 제조하였고 제조된 막의 두께는 100-150μm 이다. 사용한 PEO는 MW100,000,EVA의 VAc 함량은 40wt%이다. 기체투과 실험은 B. S. Chem 사의 GPA-2001을 사용하여 측정하였으며, 기체 투과막의 단면적은 14.7cm²이다.
최근 낮은 표면장력, 높은 확산계수, 가스와 같은 낮은 점도, 그리고 액체와 유사한 밀도를 갖는 초임계 유체의 장점을 이용하여 여러 가지 물질의 합성이나 응용 공정에 초임계 유체를 이용하고 있다. 초임계 유체를 이용하여 복합체 제조 시 기존의 용융공정에 비해서 분자들의 움직임이 활발하게 이루어 질 수 있어서 물성의 향상을 기대할 수 있다. 또한 클레이가 고농도로 함유된 마스터 배치를 쉽게 제조할 수 있으며, 기존의 유기 용매를 사용하여 복합체를 제조할 때보다 잔존 용매를 쉽게 제거할 수 있다는 장점을 가지고 있다. 따라서 본 연구에서는 이러한 초임계 이산화탄소를 이용하여 폴리에틸렌옥사이드/클레이 나노복합체를 제조하였다. 또한 본 연구의 목적은 초임계 상태에서 분자들의 활발한 움직임을 기대할 수 있으므로 고분자가 용해되고 클레이 층상으로 효과적으로 삽입되어 복합체의 열적 특성 및 다른 여러 가지 물성을 증가시키는 데 있다. 복합체 제조 후 XRD, TGA, 그리고 DSC를 이용하여 복합체의 특성을 분석 했다. 그 결과 용융방법으로 제조한 복합체보다 열 안정성이 향상되었으며, 클레이 층상 거리도 더 많이 벌어짐을 확인할 수 있었다.
시차주사 열분석기를 이용하여 poly(ethylene oxide)(PEO)/poty(styrene-co-acrylic acid) (SAA) blonds에 대한 등온 결정화 속도를 blend의 조성, 사용한 SAA의 공중합조성 및 결정화 온도에 따라 조사하였다. 실험결과는 Avrami 방정식을 이용하여 분석하였다. Avrami지수는 결정화 온도에 관계없이 거의 모든 blend 시료에서 2의 값을 나타내었다. 결정화 속도는 blend시료의 SAA 함량 및 사용한 SAA 공중합체의 아크릴산함량이 증가함에 따라 급격히 느려졌다.