A high nitrogen PM tool steel has shown to have an excellent galling resistance due to the introduction of a high amount of a low friction phase predominantly consisting of VN. Tool making and heat treatment are according to standard procedures. An increase of tool life of more than two times compared to ordinary tool steels is found. Furthermore, the new low friction tool steel shows a potential for sintered parts with higher densities through the applica bility of increased compaction pressure or minimized lubricant amount.
The aim of this work was to establish an optimal condition for determination of apparent density and flow rate for warm compacting powder. For this purpose it was evaluated uncertainty on them according to ISO Guide to the Expression of Uncertainty in Measurement. This evaluation example would be useful even in powder fluidity measurement at room temperature.
P/M high speed steels(1.28% C, 4.20% Cr, 6.40% W, 5.00% Mo, 3.10% V, bal. Fe) from two different venders were applied to powder compacting punch. The test results show that failure lifes were very different between two punches. These were no difference in volume fraction and mean size of carbides(MC or M6C) but non-metallic inclusions in two punches. Small amount of non-metallic inclusion in the punch did not greatly affect impact energy and transverse rupture strength (TRS). But, fatigue life was drastically decreased by non-metallic inclusions. These results show that fatigue failure was initated around non-metallic inclusion by cyclic load and the fatigue life was greatly affected by the presence of non-metallic inclusions in the punch.