Environmental DNA (eDNA) has emerged as a promising tool for aquatic biodiversity monitoring, yet its collection in lentic ecosystems remains technically constrained by filtration capacity and field logistics. In this study, we applied a novel eDNA concentration system, QuickConcTM, to evaluate freshwater mussel diversity in lakes, and compared its performance with the conventional GF/F filtration method. Water samples were collected from four reservoirs at surface, mid, bottom, and waterside layers, and processed using both filtration techniques. Metabarcoding of mitochondrial 16S rDNA revealed that QuickConcTM captured a higher average number of amplicon sequence variants (ASVs) and exhibited greater species richness and diversity indices (Shannon and Simpson), although the differences were not statistically significant. QuickConcTM samples showed a greater capacity to detect rare taxa and to recover higher ASV richness in certain cases, suggesting its potential to enhance biodiversity resolution. Species composition remained consistent across methods, with Cristaria plicata and Sinanodonta lauta being dominant in both cases. However, slight spatial variations in species assemblages were observed between center and waterside sampling points, highlighting the influence of habitat heterogeneity on eDNA distribution. Overall, our results demonstrate that the QuickConcTM system offers a practical and efficient alternative to traditional filtration methods for eDNA-based freshwater mussel monitoring, particularly in environments with high suspended solids. The findings underline the need for adaptive sampling strategies that consider both methodological and ecological factors when designing eDNA surveys in lentic ecosystems.