간행물

생태와 환경 KCI 등재 Korean Journal of Ecology and Environment

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol.58 No.3 (2025년 6월) 10

1.
2025.06 구독 인증기관 무료, 개인회원 유료
Lakes and reservoirs represent key freshwater ecosystems that host diverse aquatic organisms and perform essential functions such as water cycling, nutrient retention, and ecosystem service provision. Due to their semi-closed hydrological structure and limited inflow-outflow dynamics, lakes exhibit complex biological communities shaped by regional climate, topography, and land use. However, these ecosystems are increasingly exposed to multifactorial stressors-including climate change, urbanization, nutrient enrichment, and invasive species-that are causing significant structural and functional shifts in aquatic biodiversity. This review provides an integrative overview of (1) the structural and ecological characteristics of lake ecosystems and the primary drivers of biodiversity alteration, (2) the ecological functions and bioindicator potential of key organism groups including phytoplankton, zooplankton, aquatic macrophytes, benthic macroinvertebrates, and fish, and (3) the emerging role of environmental DNA (eDNA) metabarcoding in lake biodiversity monitoring. We highlight both the technical principles and challenges of eDNA analysis and discuss its potential to complement traditional survey methods for the development of integrated ecosystem health assessments. Positioned at the forefront of the 2025 special issue of Ecology and Environment, this article establishes a conceptual and methodological foundation for a national-scale freshwater biodiversity monitoring framework in Korean lakes.
4,000원
2.
2025.06 구독 인증기관 무료, 개인회원 유료
This study investigated seasonal variations in phytoplankton community composition and physicochemical water quality across 90 lakes in South Korea surveyed 2022 to 2024, and examined their relationships with environmental factors. Over the course of four seasons, a total of 952 phytoplankton taxa were identified, with Bacillariophyta (diatoms) and Chlorophyta (green algae) accounting for 64.2% of the total species richness. Diatom species such as Aulacoseira granulata, Fragilaria crotonensis, and Cyclotella meneghiniana were frequently observed regardless of season. In terms of cell density, Cyanophyta were dominant, comprising 85.1% on average, with particularly high summer densities driven by blooms of Microcystis aeruginosa and Aphanizomenon sp. In contrast, diatoms accounted for the highest relative abundance in winter (54.1%). Canonical correspondence analysis (CCA) revealed that Cyanophyta and Chlorophyta were positively correlated with water temperature, TP, COD, and Chl-a, whereas Bacillariophyta and Cryptophyta showed negative correlations with these variables. These results indicate that phytoplankton communities in Korean lakes are highly responsive to variations in temperature and nutrient concentrations, and that summer rainfall-driven nutrient inflow plays a critical role in triggering cyanobacterial blooms. This study provides a scientific basis for understanding seasonal ecosystem dynamics in Korean lakes and offers foundational data for eutrophication management and the development of biological water quality assessment indices.
4,300원
3.
2025.06 구독 인증기관 무료, 개인회원 유료
This study analyzed and presented zooplankton species occurrence, diversity distribution, and community composition in ninety lakes across South Korea using samples collected through the “Survey of Lake Aquatic Ecosystem Status and Health Assessment.” When comparing our results with the National Species Checklist, we identified factors within each of the three taxa that warrant improvement due to their influence on diversity assessments. To bridge the gap between the ongoing lake ecosystem surveys and the continually updated National Species Checklist-and to enhance the accuracy of diversity evaluations-we conclude that (1) greater taxonomic rigor must be reflected in the national checklist, and (2) the limitations of morphology-based identification (α-taxonomy) must be addressed. Because the National Species Checklist does not distinguish among species, subspecies, and morphospecies, it can give rise to taxonomic oversplitting and taxonomic inflation, leading to ambiguous diversity-index results. Moreover, the low resolution of morphological identification for zooplankton (at the genus, family, or class level) can introduce errors when comparing communities across habitats or detecting non-native introductions. Although alternatives such as environmental DNA and functional diversity exist, they require further refinement before being adopted in policy; therefore, they should be implemented alongside and in comparison with current aquatic ecosystem health assessment methods.
5,200원
4.
2025.06 구독 인증기관 무료, 개인회원 유료
To conduct a comprehensive assessment of aquatic ecosystems, it is necessary to understand the characteristics of lentic ecosystems such as lakes, in addition to rivers. This requires analyzing the characteristics of biological communities in lakes and developing appropriate assessment indices. In this study, we analyzed the distributional characteristics of benthic macroinvertebrate communities collected from 90 lakes between 2022 and 2024, according to four categories of lake types (inflow stream type, lake size, salinity characteristics, and trophic states). The environmental variables used to classify lake types (catchment area, altitude, area of water, electrical conductivity, total phosphorus, and chlorophyll-a) all followed a log-normal distribution with positive skewness. Most of the lake types were characterized by inflow from lowland small streams, small or middle size, and freshwater lakes. However, in terms of trophic states, many lakes were assessed as mesotrophic or eutrophic. Analysis of seven community structure characteristics (taxa richness, taxa abundance, dominance, diversity, richness, evenness, and Lake Benthic Macroinvertebrate Assessment Index, LBAI) and two functional groups (feeding and habitat) showed clear changes primarily associated with trophic states, while other lake types showed irregular increase or decrease or similar levels. In the CCA, which analyzed dominant taxa by abundance and six environmental variables, the distribution patterns of lakes were more clearly distinguished by salinity characteristics related to electrical conductivity, unlike the community indices. The results of this study are expected to serve as basic data for future monitoring and assessment of lake aquatic ecosystems using benthic macroinvertebrates.
5,400원
5.
2025.06 구독 인증기관 무료, 개인회원 유료
This study investigates how lake morphology, water quality, and water-level fluctuations (WLF) collectively shape wetland plant communities across 90 lakes in the Republic of Korea. By analyzing morphological indices (Index of Basin Permanence; IBP, Rawson Index; RI), WLF, water quality, and vegetation data, we identified four distinct lake groups through cluster analysis. Group C, comprising large dams, was characterized by the highest IBP and extreme WLF. Despite having favorable water quality, this group exhibited the lowest species richness, suggesting that severe physical disturbance from WLF is a primary limiting factor for wetland plant community. In contrast, Group A (estuarine reservoirs) showed stable water levels but high nutrient concentrations, which led to eutrophic conditions and communities dominated by a few tolerant species. Group D, which included small agricultural reservoirs and floodplain wetlands, had complex shorelines (highest RI) and supported the higher diversity of aquatic plants. This indicates that habitat heterogeneity can mitigate moderate physical disturbances and enhance richness. Canonical Correspondence Analysis and Variation Partitioning Analysis revealed that community structure is primarily influenced by hydrological disturbance, chemical stress (eutrophication), salinity, and shoreline complexity. These analyses confirmed that the interplay of these environmental factors explains community variation more effectively than any single factor alone. Our findings demonstrate that lake plant communities are shaped by a complex interaction of geomorphological, hydrological, and chemical factors. Therefore, effective lake management must adopt an integrated approach, considering both water-level regulation and shoreline complexity to enhance ecological integrity.
4,300원
6.
2025.06 구독 인증기관 무료, 개인회원 유료
This study analyzed the structural characteristics and influencing factors of fish assemblages according to lake size (small, medium, large) based on fish survey data from 90 lakes designated under the National Aquatic Ecosystem Health Monitoring Program in Korea. From surveys conducted between 2022 and 2024, a total of 107 fish species belonging to 32 families were recorded. The dominant species was the bluegill (Lepomis macrochirus, relative abundance [RA]: 21.2%), followed by Hemiculter eigenmanni as the subdominant species (RA: 13.6%). Statistical analysis based on lake size revealed significant differences across eight ecological indicators including species richness, abundance, diversity, evenness, richness, dominance, number of endemic species, and number of exotic species according to lake size. These indicators tended to increase with lake size. While this pattern may be initially attributed to positive factors associated with larger lakes, such as greater habitat heterogeneity and food resource diversity, it is considered that the primary factor influencing these results is the difference in the number of sampling sites per lake. Since sampling sites were designated based on the national water quality monitoring network, they are considered representative of each lake’s environmental conditions. Bray-Curtis similarity and SIMPER analyses identified patterns in assemblage similarity and the key contributing species for each size group. This study provides empirical evidence that demonstrates the influence of lake size on fish assemblage composition and structure and highlights the necessity of incorporating lake size and typology into fish-based assessments of lentic ecosystem health.
4,000원
7.
2025.06 구독 인증기관 무료, 개인회원 유료
Phytoplankton play a vital role as primary producers in freshwater ecosystems, contributing to the nutrient cycle, energy flow, and ecological stability. To accurately assess phytoplankton diversity and community composition, this study compared traditional microscopy and environmental DNA (eDNA) metabarcoding in six small lakes located in the Han, Geum, and Nakdong River basins in Korea. eDNA analysis identified 268 species from 161 genera, approximately 2.4 times higher than microscopy, which detected 113 species from 68 genera. The eDNA data were dominated by picocyanobacteria such as Synechococcus and Cyanobium, while microscopy primarily revealed larger taxa, including Stephanodiscus and Scenedesmus. Nonmetric multidimensional scaling (NMDS) based on Bray-Curtis similarity showed clear separation between the two methods, with average similarity values of 0.0326 (1st survey) and 0.0221 (2nd survey) at the species level. Only 6.8% of the 429 total species were commonly detected by both methods, while overlap at the genus level was 18.8%. Spatial heterogeneity in phytoplankton communities based on eDNA was also evident depending on the sampling location, with the centre of the surface showing the highest species richness and overlap, suggesting its suitability for biodiversity monitoring. These findings demonstrate the high resolution and sensitivity of eDNA metabarcoding in capturing phytoplankton diversity and highlight its complementary role in existing biomonitoring programmes. Further improvements in the quantitative reliability of eDNA-based assessments will require efforts such as copy number normalisation, methodological standardisation, and refinement of reference databases.
4,600원
8.
2025.06 구독 인증기관 무료, 개인회원 유료
Environmental DNA (eDNA) analysis has emerged as a powerful tool for biodiversity monitoring due to its efficiency, standardization potential, and cost-effectiveness. We evaluated the applicability of eDNAbased zooplankton monitoring in Korean lakes by comparing three DNA methods-eDNA, iDNA, and eiDNA-with traditional microscopy. Sampling was conducted in six lakes with varying conditions. eDNA was obtained from lake water, iDNA from unpreserved zooplankton incubated in water, and eiDNA from zooplankton incubated in ethanol. DNA metabarcoding detected more taxa than microscopy, but dominant taxa overlapped, mainly Daphnia. While DNA methods showed higher richness, Simpson and Shannon indices were higher in microscopy, reflecting differences in quantification methods. These discrepancies reflect methodological differences in how taxa are quantified and suggest that DNA-based approaches may overrepresent certain groups in richness estimates. In addition, false negatives were observed for several common rotifer species (e.g., Keratella, Polyarthra), likely due to incomplete reference databases and high intraspecific genetic diversity. Conversely, some taxa detected only by DNA-particularly small-bodied or rare crustaceans-may represent false positives relative to microscopy. These findings emphasize the importance of improving reference libraries and interpreting DNA results with caution, while also supporting the utility of DNA-based methods as complementary tools in zooplankton monitoring and national biodiversity assessments.
4,600원
9.
2025.06 구독 인증기관 무료, 개인회원 유료
Freshwater bivalves contribute to key ecological functions in lake ecosystems, yet their cryptic and benthic lifestyles often hinder detection through conventional surveys. In this study, we applied environmental DNA (eDNA) metabarcoding to assess the diversity and distribution of unionid bivalves in six lakes across Republic of Korea. Water samples were collected from three sampling strategies-Center Surface, Center Mix, and Waterside Surface-and processed using 16S rDNA-targeted primers followed by high-throughput sequencing. A total of four unionid species (Cristaria plicata, Sinanodonta lauta, Unio (Nodularia) douglasiae, and Anodonta woodiana) were detected across 18 sampling points. Notably, eDNA successfully identified unionid presence in all lakes, even where conventional surveys failed to observe individuals. Among the sampling strategies, Center Mix exhibited the highest values for Shannon and Simpson indices as well as ASV richness. Waterside Surface samples generally showed lower diversity and detection frequency. A Venn diagram of ASV occurrences revealed three ASVs shared across all sampling strategies and one unique ASV found only in Center Mix. These results indicate that sampling location significantly affects detection sensitivity and diversity representation in eDNA-based bivalve monitoring. Combined application of Center Mix and Center Surface strategies may enhance both detection efficiency and species diversity coverage in lentic environments.
4,200원
10.
2025.06 구독 인증기관 무료, 개인회원 유료
Environmental DNA (eDNA) has emerged as a promising tool for aquatic biodiversity monitoring, yet its collection in lentic ecosystems remains technically constrained by filtration capacity and field logistics. In this study, we applied a novel eDNA concentration system, QuickConcTM, to evaluate freshwater mussel diversity in lakes, and compared its performance with the conventional GF/F filtration method. Water samples were collected from four reservoirs at surface, mid, bottom, and waterside layers, and processed using both filtration techniques. Metabarcoding of mitochondrial 16S rDNA revealed that QuickConcTM captured a higher average number of amplicon sequence variants (ASVs) and exhibited greater species richness and diversity indices (Shannon and Simpson), although the differences were not statistically significant. QuickConcTM samples showed a greater capacity to detect rare taxa and to recover higher ASV richness in certain cases, suggesting its potential to enhance biodiversity resolution. Species composition remained consistent across methods, with Cristaria plicata and Sinanodonta lauta being dominant in both cases. However, slight spatial variations in species assemblages were observed between center and waterside sampling points, highlighting the influence of habitat heterogeneity on eDNA distribution. Overall, our results demonstrate that the QuickConcTM system offers a practical and efficient alternative to traditional filtration methods for eDNA-based freshwater mussel monitoring, particularly in environments with high suspended solids. The findings underline the need for adaptive sampling strategies that consider both methodological and ecological factors when designing eDNA surveys in lentic ecosystems.
4,000원