In this study, we estimated the applicability of length-weight relationship-based biomass calculations by comparison of body length of genus Polyarthra collected from different habitats. Through the comparison, we also tested availability of representative species-specific biomass value of Polyarthra which is often used without length measurement. Polyarthra samples were collected from rivers (Han River and Nakdong River) and reservoir (Paldang Reservoir), and the body length was measured for statistical comparison among habitats and biomass calculations using different equations suggested previously. According to the results, the body length of Polyarthra spp. was significantly different among sampling sites, and the necessity of body length measurement for rotifer species in each situation has been suggested rather than using the representative biomass values which is fixed without considering time and space. Comparison of suggested biomass calculations based on our measured Polyarthra body length, the equation suggested by McCauley showed more reasonable range of biomass values than that suggested by EPA. In addition, in order to calculate more accurate biomass, it is necessary to measure the body length of rotifers, at least more than 44 individuals to reduce error probability to less than 5% with 99% probability. However, since direct measurement of rotifers biomass is limited, it is considered that further analyses are required for more precise application of rotifer biomass of which has high variability due to complex morphologies and species-specific cyclomorphosis often induced by biotic and abiotic factors in the habitats.
Ecological and ecosystem database is becoming very necessary to understand origins and relationship between human and nature and also to minimize disturbance caused by human activities. An ecological information portal can play important roles as a computing system to collect knowledge, distributed research findings and separated data from researchers. In this study, we designed and developed ecological information portal service (EcoBank 1.0) for collecting and providing ecological information for diverse classes of stakeholders. To reach the goal, we had reviewed related and comparable ecological database portals to design conceptual structure of EcoBank system including database management framework. Then, we developed some functions of ecosystem analysis for each stake-holders (researchers, general public and policy makers). As a result of this study, we successfully designed of EcoBank system covering the functions of Digital Object Identifier (DOI) publishing and data quality management process. Also, we (1) applied ecological indices for calculating biodiversity by administrative boundary for policy makers, (2) provided statistical information of econature map for general public and distribution characteristics of species for researchers. To make a successful establishment of EcoBank, we have to collect and build up related database and offer various and reliable ecological data consistently. We expect that the successful construction of EcoBank will help not only to accomplish sustainable development goals but also to raise the welfare of ecosystem in Korea.
This study was carried out to predict the current and future potential distribution and to identify the factors affecting potential distribution of 7 plants (Lamium amplexicaule L., Trigonotis peduncularis (Trevir.) Benth. ex Hemsl, Capsella bursa-pastoris (L.) L. W. Medicus, Taraxacum officinale Weber, Veronica persica Poir., Conyza sumatrensis E. Walker, Hypochaeris radicata L.) selected as indicators for climate change in agricultural ecosystem. We collected presence/absence data of 7 indicator plants at 108 sites in South Korea and applied the Maxent model. According to future climate scenario, the distribution area of C. bursa-pastoris (L.) L. W. Medicus, T. officinale Weber, and V. persica Poir. was expected to be reduced, but the distribution range was to be maintained. The distribution areas and range of the C. sumatrensis E. Walker and H. radicata L. were expected to be increased. The distribution area and range of T. peduncularis (Trevir.) Benth. Ex Hemsl. and L. amplexicalue L. were rapidly decreased. Non-climatic factors such as land cover and altitude were the most important environmental variable for T. officinale Weber, C. bursa-pastoris (L.) L.W.Medicus, V. persica Poir., T. peduncularis (Trevir.) Benth. Ex Hemsl., and L. amplexicalue L.. Climatic factors were the most important environmental variable for C. sumatrensis E. Walker and H. radicata L.. It is expected that the future potential distribution of 7 indicator plants response to climate change will be used to monitor and to establish the management plan.
The roadkill that animals die after bumping by vehicles on the roads is acting as a factor to decrease the size of various animal populations. It has also been known to be the biggest artificial causations of Vertebrata deaths not only in urban areas but also protected areas such as national parks. Nevertheless, in the national park areas which are major protected national areas for conservation of national biodiversity and ecological diversity, snake roadkills occur frequently. Up to date, related studies are rare. Therefore, in this study, we described snake roadkill patterns on the roads in six national parks between 2006 and 2015. We identified total 736 snake roadkills compromising 10 different species. Five species, Rhabdophis lateralis, Elaphe dione, Gloydius ussuriensis, Lycodon rufozonatus, Gloydius brevicaudus occupied more than 91.7% of total roadkill cases. Active forager snakes were killed by roadkills more than ambush foragers, and the snake roadkill frequency was the highest in September, a migration period and in August when the young individuals dispersed at between 100 and 799 m altitude areas. Roads where roadkills were frequent lie between forest and hydrosphere or between forest and crop field road sides. Our results could be used to identify the trend of snake roadkills on the roads in national parks, and to establish effective roadkill mitigation measures and policies.
Stable isotope tracers were first applied to evaluate the Microcystis cell assimilation efficiency of bivalves, since the past identification method has been limited to tracking the changes of each chl-a, clearity, and nutrient. The filter-feeders (Sinanodonta woodiana and Unio douglasiae) were assessed under the condition of cyanobacteria (Microcystis aeruginosa) blooms through an in mesocosm experiment using 13C and 15N dual isotope tracers. Chl-a concentration in the treatment mesocosm was dramatically decreased after the beginning of the second day, ranging from 116 to 66 μg L−1. In addition, the incorporated 13C and 15N atom % in the S. woodiana bivalve showed higher values than U. douglasiae bivalves. The results demonstrate that U. douglasiae has less capacity to assimilate toxic cyanobacteria derived from diet. Our results therefore also indicate that S. woodiana can eliminate the toxin more rapidly than U. douglasiae, having a larger detoxification capacity.