본 연구는 소래풀을 경관화훼로 이용하기 위해 온도조건에 따른 발아특성을 알아보고 회귀분석(bilinear, parabolic, beta distribution)모델을 통해 주요온도(최저, 최적 및 최고온 도)를 구명하고자 하였다. 소래풀 종자는 5, 10, 15, 20, 25, 30, 35℃ 항온 조건 중 25℃에서 약 6~7일만에 최종발아율이 100%에 도달하였으며, 발아세, 발아속도, 평균발아속도와 평균발아시간이 각각 100%, 21.37ea/day, 14.48, 4.39일 로 다른 처리보다 발아특성이 우수하였다. 이를 바탕으로 발아 속도(germination rate, GR)가 50%인 시점(GR50)을 역수로 (1/GR50)하여 주요온도를 분석한 결과, bilinear모델의 경우, 최저, 최적 및 최고온도는 4.8℃, 25.8℃, 35.6℃였으며 (R2=0.9566, p<0.001), parabolic모델은 최저온도 6.1℃, 최 적온도 21.6℃, 최고온도 36.7℃였다(R2=0.8818, p<0.001). 또한 beta distribution 모델의 주요온도는 최저온도 6.1℃, 최 적온도는 23.1℃, 최고온도 40.1℃였다(R2=0.9102, p<0.001). 본 연구에서 분석한 회귀모델 모두 0.1% 수준에서 통계적 유의 차가 인정된 것으로 보아 소래풀 종자의 발아 시 최저온도는 4.8~6.1℃, 최고온도는 35.6~40.1℃, 최적온도는 21.6~25.8℃ 이며, 50% 이상의 발아율을 기대하였을 때 온도의 범위는 20~25℃가 적합할 것으로 판단된다. 이와 같은 결과는 소래풀 을 이용하여 경관조성을 할 때 파종 및 발아시기를 예측할 수 있는 자료로 활용될 수 있을 것으로 판단된다. 그러나 경관조성 을 하는 현장에서 실질적인 도움을 제공할 수 있도록 발아의 주요온도 모델과 함께 식물의 생물계절 관점에서 추가적인 연구 가 필요할 것으로 판단된다.
PURPOSES : The purpose of this study is to compare applicability, explanation power, and flexibility of traffic accident models between estimating model using the statistical method and the machine learning method.
METHODS: In order to compare and analyze traffic accident models between model estimated using the statistical method and machine learning method, data acquisition was conducted, and traffic accident models were estimated using statistical methods such as negative binomial regression model, and machine learning methods such as a generalized regression neural network (GRNN). Then, the fitness of model as R2, root mean square error (RMSE), mean absolute percentage error (MAPE), accuracy, etc., were determined to compare the traffic accident models.
RESULTS: The results showed that the annual average daily traffic (AADT), speed limits, number of lanes, land usage, exclusive right turn lanes, and front signals were significant for both traffic accident models. The GRNN model of total traffic accidents had been better statistical significant with R2: 0.829, RMSE: 2.495, MAPE: 32.158, and Accuracy: 66.761 compared with the negative binomial regression model with R2: 0.363, RMSE: 9.033, MAPE: 68.987, and Accuracy: 8.807. The GRNN model of injury traffic accidents also showed similar results of model’s statistical significance.
CONCLUSIONS: Traffic accident models estimated with GRNN had better statistical significance compared with models estimated with statistical methods such as negative binomial regression model.
본 연구에서는 서울지역의 지상 미세먼지(PM2.5) 농도를 산출하기 위하여 경험적인 모델들을 개발하였다. 연구에 이용한 자료는 2012년 1월 1일부터 2013년 12월 31일까지이며 Terra와 Aqua위성의 MODIS센서에서 산출되는 에어로 졸 광학두께, 옹스트롬 지수, 기상변수들과 행성경계층두께와 관련된 6개의 다중 선형 회귀모델들의 차이를 분석하였다. 그 결과 에어로졸 광학두께와 옹스트롬 지수, 상대습도, 풍속, 풍향, 행성경계층두께, 기온 자료를 입력 자료로 사용한 M6모델이 가장 좋은 결과를 보였다. 통계적인 분석에 따르면 M6 모델을 사용하여 계산된 PM2.5와 관측된 PM2.5농도 사 이의 결과는 상관계수(R=0.62)와 평균제곱근오차(RMSE=10.70 μg m−3)이다. 또한 산출된 계절별 지표면 PM2.5농도는 여름철(R=0.38)과 겨울철(R=0.56)보다 봄(R=0.66)과 가을철(R=0.75)에 상대적으로 더 좋은 상관 관계를 보였다. 이러한 결과는 에어로졸 광학두께의 계절별 관측 특성으로 인한 것으로써 다른 계절에 비하여 여름과 겨울철 에어로졸 광학두께 관측이 구름과 눈/얼음 표면에 의한 관측 제한과 오차를 가져온 것으로 분석되었다. 따라서 본 연구에서 사용한 경 험적 다중선형회귀 모델은 위성에서 산출된 에어로졸 광학두께 자료가 지배적인 변수로 작용하며 PM2.5산출 결과들을 향상시키기 위해서는 추가적인 기상 변수를 이용해야 할 것이다. 또한 경험적 다중선형회귀 모델을 이용하여 PM2.5를 산출한 결과는 인공위성 자료로부터 대기환경 감시를 가능하게 하는 방법이 될 수 있어 유용할 것이다.
국내 수출입 물동량의 증가와 해운산업의 발달에 따라 항만시설물의 사용빈도 또한 증가 추세에 있으나, SOC의 해운항만 부문의 투입 정부예산은 감축되어 왔다. 증가하는 사용빈도에 반하여 줄고 있는 예산으로 인해 항만시설물의 체계적이고 효율적인 유지관리 및 운영이 필요하다. 효율적인 유지관리 시스템 구축을 위해서 항만시설물이 위치한 지역, 구조물의 형태 및 취급화종, 시공 및 유지관리 수준과 같은 특성을 고려한 열화모델 개발이 필요하다. 항만시설물의 열화모델 개발은 시설물의 열화요인 분석과 열화데이터 수집 및 열화 모델 개발의 과정으로 수행하였다. 열화 모델 개발기법은 변수 특성에 따른 시간 의존적 상태변화를 반영할 수 있는 결정론적 방법인 다중 회귀분석과 변동성이 큰 자료들의 상태이력을 반영할 수 있는 확률론적 방법인 마코브 체인 이론을 이용하였다. 각 방법을 통해 잔교식 구조물과 블록식 구조물의 Project level의 상태 열화모델을 제시하였다.
본 연구의 목적은 사고위치별(유입부, 유출부, 교차로내 및 횡단보도) 로지스틱 회귀 교통사고 모형을 개발하는 것이다. 충북지방경찰청의 2004~2005년도 사고 자료와 현장조사 자료를 근거로, 교통사고와 관련된 기하구조 요소, 환경 요소 등이 분석되었다. 개발된 모형은 카이제곱 p 값은 0.000 그리고 Nagelkerke R2값 0.363~0.819로 모두 통계적으로 유의한 것으로 분석된다. 개발된 모형의 공통 사고요인은 교통량, 횡단거리 및 좌회전전용차로이며, 특정변수는 교차로내 사고모형의 부도로 교통량, 그리고 횡단보도 사고모형의 주도로 U턴인 것으로 나타나고 있다. Hosmer & Lomeshow 검정은 유입부를 제외한 모형들은 p값이 0.05보다 크기 때문에 통계적으로 적합한 것으로 평가된다. 또한 정분류율 결과는 모든 모형식이 73.9% 이상으로 높은 예측력을 보이는 것으로 분석된다.
기존 콘크리트 포장의 단면 설계 시 발생하는 문제점을 해결하기 위해 유한 요소법(FEM)을 이용하여 것이 하나의 방법론으로 부각되었으며 현재 한국형 포장 설계법 개발 연구에서도 적용 중에 있다. 본 연구에서는 ABAQUS와 포트란 해석 프로그램을 이용하여 콘크리트 포장의 한계 응력을 계산하였고, 그 결과를 뉴럴 네트워크와 선형 회귀식을 이용하여 비교 분석하였다. 입력 변수가 많지만 다양한 해석을 하지 못하는 경우(입력변수 6개에 대해 81 경우 수 해석)에 대해 구조해석 결과를 뉴럴 네트워크(이하 NN: Neural Networks)와 선형 회귀식으로 비교한 결과, 구조해석 결과와 다소 차이가 있음을 확인하였다. 반면 입력 변수를 줄이되 다양한 경우에 해석한 경우(입력 변수 3개에 대해 343 경우의 수)의 분석 결과, NN과 선형 회귀식이 구조해석 결과와 매우 유사한 결과가 나타나는 것을 알 수 있었다. 하지만 그래프의 (0,0), (1,1) 부분에서 NN이 선형 회귀식에 비해 더 정확한 것을 확인하였다. 이와 같은 연구 결과를 통해서 한국형 포장 설계법의 핵심인 응력 계산 모듈을 선형 회귀식보다 좀 더 정확한 NN으로 해석하는 것을 제안하였다.
This study used a quantile regression model and a non-homogeneous regression model to calibrate probabilistic forecasts of wind speed. These techniques were applied to the forecasts of wind speed over Pyeongchang area using 51-member European Centre for Medium-Range Weather Forecast (ECMWF). Reliability analysis was carried out by using rank histogram to identify the statistical consistency of ensemble forecasts and corresponding observations. The performances were evaluated by rank histogram, mean absolute error, root mean square error and continuous ranked probability score. The results showed that the forecasts of quantile regression and non-homogeneous regression models performed better than the raw ensemble forecasts. However, the differences of prediction skills between quantile regression and nonhomogeneous regression models were insignificant.
This paper considers a homogeneous multiple regression (HMR) model and a non-homogeneous multiple regression model, that is, ensemble model output statistics (EMOS), which are easy to implement postprocessing techniques to calibrate probabilistic forecasts that take the form of Gaussian probability density functions for continuous weather variables. The HMR and EMOS predictive means are biascorrected weighted averages of the ensemble member forecasts and the EMOS predictive variance is a linear function of the ensemble variance. We also consider the alternative implementations of HMR and EMOS which constrains the coefficients to be non-negative and we call these techniques as HMR+ and EMOS+, respectively. These techniques are applied to the forecasts of surface temperature over Pyeongchang area using 24-member Ensemble Prediction System for Global (EPSG). The performances are evaluated by rank histogram, residual quantile-quantile plot, means absolute error, root mean square error and continuous ranked probability score (CRPS). The results showed that HMR+ and EMOS+ models perform better than the raw ensemble mean, HMR and EMOS models. In the comparison of HMR+ and EMOS+ models, HMR+ performs slightly better than EMOS+ model in terms of CRPS, however they had a very similar CRPS and if there exists a ensemble spread-skill relationship, it is seen that EMOS is slightly better calibrated than the homogeneous multiple regression model.
겨울철에 금강하류에서는 암모니아성 질소(NH3-N) 농도가 주기적으로 높게 검출되어, 부여지점에서 취수하는 정수장의 수처리 공정에 큰 장애가 되고 있다. 질소농도 저하와 소독부산물 생성 억제를 위해 종종 대청댐의 추가 방류가 검토되고 있으나, 방류량과 직소농도 관계의 정량적 분석에 어려움이 있었다. 본 연구에서는 8년간의 일별 수질자료와 댐 방류량 자료를 이용하여 겨울철(12월∼3월) 동안 일별 NH3-N 농도를 예측할 수 있는 다중회귀모형을 개발하고,