검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 19

        2.
        2023.11 서비스 종료(열람 제한)
        We conducted safety assessments for the disposal of spent resin mixed waste after the removal of beta radionuclides (3H, 14C) in a landfill facility. The spent resin tank of Wolsong nuclear power plant is generated by 8:1:1 weight ratio of spent ion exchange resin, spent activated carbon and zeolite. Waste in the spent resin tank was classified as intermediate-level radioactive waste due to 14C. Other nuclides such as 60Co and 137Cs exhibit below the low-level radioactive waste criteria. The techniques for separating mixed waste and capturing 14C have been under development, with a particular focus on microwave-based methods to remove beta radionuclides (3H, 14C) from spent activated carbon and spent resin within the mixed waste. The spent resin and activated carbon within the waste mixture exhibits microwave reactivity, heated when exposed to microwaves. This technology serves as a means to remove beta isotopes within the spent resin, particularly by eliminating 14C, allowing it to meet the low-level radioactive waste criteria. Using this method, the waste mixture can meet disposal requirements through free water and 3H removal. These assessments considered the human intrusion scenarios and were carried out using the RESRAD-ONSITE code. The institutional management period after facility closure is set at 300 years, during which accidental exposures resulting from human intrusion into the disposal site are accounted for. The assessment of radiation exposure to intruders in a landfill facility included six human intrusion scenarios, such as the drilling scenario, road construction scenario, post-drilling scenario, and post-construction scenario. Among the six human intrusion scenarios considered, the most conservative assessment about annual radiation exposure was the post-drilling scenario. In this scenario, human intrusion occurs, followed by drilling and residence on the site after the institutional management period. We assumed that some of the vegetables and fruits grown in the area may originate from contaminated regions. Importantly, we confirmed that radiation doses resulting from post-institutional management period human intrusion scenarios remain below 0.1 mSv/y, thus complying with the annual dose limits for the public. This research underscores the importance of effectively managing and securing radioactive waste, with a specific focus on the safety of beta radionuclide-removed waste during long-term disposal, even in the face of potential human intrusion scenarios beyond the institutional management period.
        3.
        2023.11 서비스 종료(열람 제한)
        The increasing accumulation of spent nuclear fuel has raised interest in High-Level Waste (HLW) repositories. For example, Sweden is under construction of the KBS-3 repository. To ensure the safety of such HLW repository, various countries have been developing assessment models. In the Republic of Korea, the Korea Atomic Energy Research Institute has been developing on the AKRS model. However, traditional safety assessment models have not considered the fracture growth in the far-field host rock as a function of time. As repository safety assessments guarantee safety for million years, sustained stress naturally leads to the progressive growth of fractures as time goes on. Therefore, it becomes essential to account for fracture growth in the surrounding host rock. To address this, our study proposes a new coupling scheme between the Fracture growth model and the radionuclide transport model. That coupling scheme consists of the Cubic Law model as a fracture growth function and the GoldSim code which is a commercial software for radionuclide transport calculations. The model that adopting such fracture growth functions showed an increase of up to 15% in the release of radionuclide compared to traditional assessment models. our observations indicated that crack growth as a function of time led to an increase in hydraulic conductivity that allowed more radionuclide transport. Notably, these findings show the significance of adopting fracture growth models as a critical element in evaluating the safety of nuclear waste repositories.
        4.
        2023.11 서비스 종료(열람 제한)
        The radionuclide management process is a conditioning technology to reduce the burden of spent fuel management, and refers to a process that can separate and recover radionuclides having similar properties from spent fuels. In particular, through the radionuclide management process, high heat- emitting, high mobility, and high toxicity radionuclides, which have a significant impact on the performance of disposal system, are separated and managed. The performance of disposal system is closely related to properties (decay heat and radioactivity) of radioactive wastes from the radionuclide management process, and the properties are directly linked to the radionuclide separation ratio that determines the composition of radionuclides in waste flow. The Korea Atomic Energy Research Institute have derived process flow diagrams for six candidates for the radionuclide management process, weighing on feasibility among various process options that can be considered. In addition, the GoldSim model has been established to calculate the mass and properties of waste from each unit process of the radionuclides management process and to observe their time variations. In this study, the candidates for the radionuclide management process are evaluated based on the waste mass and properties by using the GoldSim model, and sensitivity analysis changing the separation ratio are performed. And the effect of changes in the separation ratio for highly sensitive radionuclides on waste management strategy is analyzed. In particular, the separation ratio for high heat-emitting radionuclides determines the period of long-term decay storage.
        5.
        2023.05 서비스 종료(열람 제한)
        Korea Atomic Energy Research Institute is developing a radionuclide management processes as a conditioning technology to reduce the burden of spent fuel disposal. The radionuclide management process refers to a process managing radionuclides with similar properties by introducing various technology options that can separate and recover radionuclides from spent fuels. In particular, it is a process aimed at increasing disposal efficiency by managing high-heat, high-mobility, and high-toxic radionuclides that can greatly affect the performance of the disposal system. Since the radionuclide management process seeks to consider various technology options for each unit process, it may have several process flows rather than have a single process flow. Describing the various process flows as a single flow network model is called the superstructure model. In this study, we intend to develop a superstructure model for the radionuclide management process and use it as a model to select the optimal process flow. To find the optimal process flow, an objective function must be defined, and at the fuel cycle system level multiple objectives such as effectiveness (disposal area), safety (explosure dose), and economics (cost) can be considered. Before performing the system-level optimization, it is necessary to select candidates of process flow in consideration of waste properties and process efficiency at the process level. In this study, a sensitivity analysis is conducted to analyze changes in waste properties such as decay heat and radioactivity when the separation ratio varies due to the performance change for each unit process of the radionuclide management process. Through this analysis, it is possible to derive a performance range that can have waste properties suitable for following waste treatment, especially waste form manufacturing. It is also possible to analyze the effect of waste properties that vary according to the performance change on waste storage and management approaches.
        6.
        2022.10 서비스 종료(열람 제한)
        Strong acidic wastewater containing a radionuclide is generated from the decontamination of radioactively contaminated wastes or equipment. This wastewater is generally treated though a precipitation process using an alkali (alkali earth) hydroxides. In this precipitation process, a significant amount of alkali (alkali earth) sulfates are generated, which is the reason for the increase in the radioactive waste generation. In this study, a method for separating only radionuclides and metal ions from the wastewater was evaluated. For this reason, precipitation behaviors of radionuclides and metal ions by hydrazine injections were investigated using equilibrium calculations. In addition, behaviors of hydrazine decomposition after removal of radionuclides and metal ions were analyzed for recycling the wastewater.
        10.
        2017.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        핵종재고량 관리는 처분시설의 안전한 관리를 위해서는 필수적이다. 본 논문에서는 원자력발전소의 잡고체폐기물에 대하 여 기존 발생된 폐기물 자료를 반영한 예측방사능량과 실제 처분시설을 운영하면서 인수되어 처분검사까지 완료된 실제방 사능량을 비교분석하였다. 극저준위방사성폐기물에서는 137CS, 90Sr, 99Tc 그리고 129I 핵종이 예측방사능량보다 실제방사능량 이 높게 평가되었으며, 저준위방사성폐기물에서는 모든 핵종에서 예측방사능량이 실제 방사능량보다 높게 평가되었다. 또 한 척도인자에 의한 예측방사능량의 민감도 분석을 통해 준위별 수량 및 총방사능량의 변화추이를 분석하였다. 향후 중저준 위방사성폐기물 처분시설의 안전한 운영과 Safety Case 구축을 위한 기초자료로 활용될 것으로 판단된다.
        11.
        2017.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        2014년 12월 사용 승인된 경주 중저준위 방사성폐기물 동굴처분시설은 중저준위 방사성폐기물의 처분을 위해 운영중이나 중준위 방사성폐기물을 처분할 수 없다. 왜나하면 기존 중준위 방사성폐기물이 원자력안전위원회 고시 2014-003호에 따라 방사성폐기물 준위가 세분화되었으며, 기존의 중저준위 방사성폐기물 핵종별 처분농도제한치 값이 변경되었으나 이를 고려 하지 못하였기 때문이다. 중준위 방사성폐기물의 안전한 처분을 위해 IAEA에서 제시한 방법론과는 달리 방사능량 산출 시 적용된 가용데이터를 기반으로 기존의 설정된 극저준위 및 저준위 방사성폐기물의 처분농도제한치를 고려하여 1단계 동굴 처분시설의 중준위 방사성폐기물에 대한 처분농도제한치를 설정하였다. 단, 14C의 경우 처분농도제한치 외에 추가적인 방사 능량 제한이 필요함을 확인하고 우물이용시나리오를 통해 1단계 동굴처분시설의 총방사능량을 제한하였다. 설정된 중준위 방사성폐기물 처분농도제한치와 14C의 총방사능량이 적용된 방사능량에 대해 운영 중 및 폐쇄 후 시나리오의 평가결과가 모 두 성능목표치를 만족함을 확인하여, 도출된 중준위 방사성폐기물 처분농도제한치가 1단계 동굴처분시설의 중준위 방사성 폐기물 처분농도제한치로 사용할 수 있음을 확인하였다. 처분 안전성 증진을 위해 방사성폐기물 발생기관의 데이터를 추가 확보하며, 14C의 누적방사능량을 관리해 나갈 계획이다.
        12.
        2017.09 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        중저준위 방사성폐기물의 처분안전성 확보와 중저준위 방폐물관리 시행계획에 따른 안정적인 처분시설 개발을 위해 중준위 방사성폐기물 처분농도제한치에 대하여 IAEA 방법론에 따라 고찰하였다. 고찰결과 IAEA 방법론에 따라 도출된 결과는 1단 계 동굴처분시설 중준위 방사성폐기물의 처분농도제한치로 사용하기 부적합하였다. 1단계 동굴처분시설은 다양한 준위 및 여러 종류의 방사성폐기물이 처분 대상이 되나, IAEA 방법론은 본래 천층처분시설의 처분농도제한치를 설정하는 방법으로 서, 단일종류의 방사성폐기물로만 구성된 처분시설의 처분농도제한치를 설정하기 적합하기 때문이었다. 따라서 처분대상 방사성폐기물의 준위별 수량을 고려한 방사능 도출, 이에 대한 시나리오별 평가결과 및 성능목표치를 고려한 1단계 동굴처 분시설 중준위 방사성폐기물 처분농도제한치 산출 방법의 개발 및 적용이 동굴처분시설의 안정적인 운영을 위해 필요하다.
        13.
        2017.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        방사성폐기물 발생기관의 가용데이터를 기반으로 산출된 핵종재고량을 적용하여 예비안전성평가를 수행한 결과 처분안전성과 운영측면에서 많은 어려움이 예상됨을 확인하였다. 본 논문에서는 전체처분시설 예비안전성평가를 수행하였으며, 평가결과 성능목표치 초과핵종에 대해 방사능량이 큰 비중을 차지하는 단위포장물을 선별하고, 높은 표면선량률의 포장물을 처분대상에서 제외하는 방식으로 처분시설의 처분방사능량제한을 도입하였다. 처분방사능량제한은 안전기준 만족을 위한 처분시설별 인수기준과 처분기준 설정에 기초자료로 활용할 것이며, 경주 처분시설의 안전한 종합개발계획수립 및 처분시 설의 안전성 최적화를 위한 Safety Case 구축에 기여할 것으로 판단된다.
        14.
        2016.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        국내의 중저준위 방사성폐기물 처분시설에 대한 핵종량은 대부분의 방사성핵종에 대한 규명이 요구되어 진다. 본 논문에 서는 국내 경주 처분시설 부지에서 방사성폐기물의 처분을 위한 처분시설의 활용도 및 효율성 그리고 신분류기준을 반영한 핵종재고량을 예측하였다. 장기 방사성폐기물의 예측하기 위해 2014년까지 다양한 발생원별 방사성폐기물의 발생량과 발 생전망을 분석하였다. 예측된 핵종재고량 결과는 처분시설에 대한 안정적인 개발 및 Safety case의 구축하는데 기여할 것으 로 판단된다.
        15.
        2015.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The use of complimentary indicators, other than radiation dose and risk, to assess the safety of radioactive waste disposal has been discussed in a number of publications for providing the reasonable assurance of disposal safety and convincing the public audience. In this study, the radionuclide flux was selected as performance indicator to appraise the performance of engineered barriers and natural barrier in the Wolsong low- and intermediate-level waste disposal facility. Radionuclide flux showing the retention capability by each compartment of the disposal system is independent of assumptions in biosphere model and exposure pathways. The scenario considered as the normal scenario of disposal facility has been divided into intact or degraded silo concrete conditions. In the intact silo concrete, the radionuclide flux has been assessed with respect to the radionuclide retardation performance of each engineered barrier. In the degraded silo concrete, the radionuclide flux has been explored based on the performance degradation of engineered barriers and the relative significance of natural barrier quantitatively. The results can be used to optimally design the near-surface disposal facility being planned as the second project phase. In the future, additional complimentary indicators will be employed for strengthening the safety case for improving the public acceptance of low- and intermediate-level waste disposal facility.
        16.
        2010.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        방사성핵종의 분포유형에 관한 정보에 기초하여 극저준위폐기물의 자체처분 적합성을 통계학적으로 해석할 수 있는 방법론을 개발하였다. 방사성핵종의 분포에 관한 정보를 알 수 없는 경우에 대해서는 널리 알려진 마코프 부등식과 체비셰프 부등식을 적용하여 방사능농도의 산술평균과 허용되는 최대 표준편차의 상관관계식을 제시하였고, 방사성핵종의 농도가 정규분포 또는 로그정규분포를 갖는 경우에 대해서는 확률밀도함수, 누적확률밀도함수 등의 통계학적 관계식을 이용하여 방사능농도의 산술평균과 허용되는 최대 표준편차의 상관관계식을 새롭게 유도하였다. 또한, 자체처분기준 100 Bq/g 및 신뢰수준 95%인 조건에 대한 사례 적용연구를 통하여 방사능농도의 산술평균과 허용되는 표준편차의 범위를 방사성핵종의 분 포유형에 따라 정량적으로 비교·제시하고, 자체처분 대상 폐기물의 방사성핵종 분포유형에 관한 정보가 확보될 경우 동일한 신뢰수준에서 자체처분이 허용될 수 있는 범위가 확장될 수 있음을 통계학적으로 입증하였다.