A viral genome was assembled de novo from next-generation sequencing (NGS) data from bean bugs, Riptortus pedestris, infected with an entomopathogenic fungus, Beauveria bassiana (Bb), and was further confirmed via the RACE method. Based on the phylogenetic analysis of the RdRp sequences, RiPV-1 was clustered in the unassigned insect RNA viruses with two other viruses, APV and KFV. These three viruses were suggested to constitute a new group of insect RNA viruses. Interestingly, RiPV-1 replication was increased dramatically in bean bugs 2 to 6 days after fungal infection. In conclusion, a novel insect RNA virus was found by NGS data assembly. This virus can provide further insight into the interaction between virus, fungus and the host.
A novel insect-infecting positive sense single-stranded RNA virus, Riptortus pedestris virus-1 (RiPV-1), was found in the Riptortus pedestris transcriptome data by de novo assembly and further confirmed by RACE method. The genome of RiPV-1 consists of 10,554 nucleotides (nt) excluding the poly(A) tail and contains a single large open reading frame (ORF) of 10,371 nt encoding a 3,456 aa polyprotein and flanked by 71 and 112 nt 5' and 3' noncoding regions, respectively. RiPV-1 genome contains the consensus genome organization of picorna-like RNA helicase, cysteine protease, and RNA-dependent RNA polymerase (RdRp) array in that order from the 5' to the 3' end. From the phylogenetic analysis, RiPV-1 was clustered with unassigned insect RNA viruses, APV and KFV, which suggests that these three insect picorna-like viruses might constitute a novel group of insect-infecting RNA viruses. Tissue tropism analysis revealed that RiPV-1 was relatively abundant in the thorax, abdomen, midgut and fat body. Interestingly, RiPV-1 replication was enhanced by Beauveria bassiana JEF-007 infection that was quantified using qRT-PCR. This study identified a novel insect-infecting virus and provided further insight into the relationship between virus, fungus and host.