단계별 작업기를 통합하여 일관화하는 복합기를 실용화하여 생산효율이 개선되어 밭농업 생력화에 기여하였다. 본 연구의 목적은 SAS를 이용한 복합작업기의 최적 작업조건을 반응표면기법(RSM)으로 구명하고 최적 성능을 실험으로 평가하여 집약적 밭농업의 트랙터 운용방법을 제시하고자 하였다. 로터리 작업에서 회전속도와 전진속도의 관계는 견인력의 효율성과 멀칭 등 작업품질에 적정한 트랙터의 운용기준 조건을 나타낸다. 슬립과 공차를 고려하면 통합 선택기준 작업속도는 3.4<SPDcr<4.7 km/h 범위로 확장되고, 로터리 피치(p)가 40<p<56 cm/rev로 판단되었다. 여러 검토조건에 서 연료소비량을 예측하고 동력의 효율성을 평가하는데 Kim 모델이 사용되었다. 목적함수를 만족하는 적정 p의 범위에 속하는 공칭 작업속도(SPD)를 엔진속도비(n)와 주행 기어비(GR)로 나타내어 최적 설계점은 카테고리 1급(DK450) 트랙터에 대하여 독립변수 n, GR/변속단수는 0.65, 401/M4로 구명되었다. 실험 평가에서 작은 트랙터는 시뮬레이션과 비교적 일치하였고, 큰 트랙터의 실험은 낮은 연료소비량과 실작업속도로 오차를 유발하였다.
If SAS users can completely avoid programming, it is an additional advantage for using SAS besides its all powerful and efficient features. This demo presentation will attempt to display the technical features of EG that enable us to use SAS without programming. That is, EG is an easy-to-use Windows application that provides
Access to much of the functionality of SAS
An intuitive, visual, customizable interface
Transparent access to data
Ready-to-use tasks for analysis and reporting
Easy exporting of data and results to other applications
Scripting and automation
A code editing facility
It provides a point-and click environment to much, but not all, of the functionality of SAS. Those features of SAS that are not directly accessible through the point-and click environment can be accessed through the code generation and execution capabilities of EG. As you access data and build tasks, EG generates SAS code behind the scenes. When you finish a task, this code is sent to SAS for processing and the results are returned to EG. You can use the features of EG without knowing how to program in SAS. If you area interested in programming, you can view the code that EG generate
Anchorage plays an important role in orthodontic treatment. Recently, some clinicians have tried to use skeletal anchorage system(titanium miniscrews and microscrews) in treatment due to their many advantages such as ease of insertion and removal, low cost, immediate loading, and the ability to place miniscrews in any area of alveolar bone. The purpose of this study was to investigate the histopathologic change of alveolar bone density around miniscrew under variable ortho -donticforceinyoung-adultdogs, throughthepolarizingmicroscopic findings. For this study, three young adult mongrel dogs(6-months in age) were used, 12 titanium miniscrews were inserted into the palatal bone(4 miniscrews placed in each dog), and then miniscrews were loadedwithorthodonticforce [50gm(F1),100gm(F2),250gm(F3), 500gm(F4)] immediately after implantation. After 1, 3 and 6 weeks, the animals were sacrificed. Then the miniscrews and surrounding bone of dogs were removed, respectively. The grinding samples along the long axis of miniscrew were made. The changes of bone density and thrombosis were examined under the polarizing microscope. Bone density was determined as color changes. The results of this study were as follows.
1. There was no thrombosis in the F1 group. But thrombosis was seen in 1 week of T side, 1, 3, 6 weeks of P side in
the F2 group, 1, 3 weeks of T side, 1, 3, 6 weeks of P side in the F3 group and 1, 3, 6 weeks of both P and T side
in the F4 group.
2. The changes of bone density decreased in P side more than T side in 1 week, while more decreased P side in 3
weeks than 1 week. In 6 weeks, bone density more increased in T side than P side along the middle & apex.
3. As orthodontic force increased, there was severe thrombosis, especially in cervical of P side. As it went up to 3, 6
weeks, thrombosis was decreased but remained.
4. As orthodontic force increased, bone density more severely decreased due to bone destruction in 1 and 3 weeks,
but more slowly increased due to bone formation in 6 weeks.
Based on the results of this study, in the practice, because of optimal orthodontic force for the most of tooth movement was less than 150gm, I thought that miniscrews could play role of use of skeletal anchorage immediately after implantation. In the more than 250gm & 500gm of orthodontic force, I thought that miniscrews would be delayed as use of skeletal anchorage after loss of bone was restored.
EEG 생리신호의 분석은 국내에서도 최근에 활발하게 연구가 진행되고 있으나, 시계열을 이용한 분석법은 통계학의 전문적인 지식을 요구하고 있기 때문에 연구에 많은 어려움이 있다. 그러므로 감성과학 연구자들이 보다 쉽게 이해하고 분석할 수 있는 Tool의 개발이 절실히 요구되고 있다. 본 논문에서는 EEG 생리신호 분석을 위한 모형분석 시스템과 생리신호 분류를 위한 판별분류 시스템을 구축하였다. 이 시스템에서는 신호분석을 위한 그래프 작성, 자극 신호에 대한 모형식별 방법의 제시, 모형에 대한 추정 및 진단 기준에 따른 최적의 모형선정 방법 등을 지원한다. 또한 선정된 모형에 이해 모수를 추정하고 이를 이용하여 통계에 대한 지식이 없이도 쉽게 각 뇌파 신호들을 판별 분류할 수 있다.