검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2023.05 구독 인증기관·개인회원 무료
        The purpose of this study is to detect future signals and changes in nuclear-related research to apply safeguards by design to new nuclear facilities or to determine nuclear fuel cycle-related research and development (R&D) activities. First, a total of 2,029 scientific articles published between 2015 and 2022 in the journal of “Nuclear Engineering and Technology” by the Korean Nuclear Society were collected. The authors of the scientific article used their expertise and knowledge to select keywords that can properly represent the article. Therefore, in this study, the keywords of each scientific article were analyzed using the technique of text mining. We then calculated the “word frequency” and “term frequency-inverse document (TF-IDF)” values of the keywords. Consequently, significant words such as “reactor,” “nuclear,” and “fuel” were extracted, which were represented as word clouds. Furthermore, keywords extracted through text mining were quantitatively classified into weak or strong signals using a keyword emergence map (KEM). The KEM is a tool that can explore future signals because essential keywords have a high frequency of appearance, and newer keywords are more important than older keywords. The KEM results showed no keywords in the strong-signal area in the field of nuclear academia. However, keywords such as “deep learning,” “earthquake,” “zircaloy,” and “CFD” were confirmed to be distributed in the weak signal area. A weak signal indicates the most probable topic that could become a strong signal in the near future. The weak signal methodology can be applied to predict future nuclear scientific trends in the rapidly changing world. Based on the results of the study, changes in the subject of nuclear-related scientific articles over the past eight years and future signals were interpreted. The results confirmed that this method can be applied to safeguards measures of new nuclear facilities in the design stage and can be used to detect R&D activities related to the nuclear fuel cycle in advance.
        2.
        2022.10 구독 인증기관·개인회원 무료
        The purpose of the present research is to verify the design characteristics of the SMART facility for the application of the IAEA’s safeguards-by-design (SBD) concept to small modular reactor (SMR) and to establish a foundation for SBD to be faithfully implemented as early as possible from the design stage. International Atomic Energy Agency (IAEA) is planning to facilitate the verification activities of inspectors by developing a safeguards approach to the reactor as early as possible and preparing a safeguards technical report (STR) before commercial operation of SMR begins. To this end, the IAEA is developing various approaches to the application of SBD to SMR with countries such as Republic of Korea, Russian Federation, China, the United States, and Canada through the Member State Support Program (MSSP). In order to review the unique design information of SMART facilities, the only deployable SMR in Korea, and to establish safeguards from the early design stages of SMART, it is necessary to carry out the task through cooperation with the Korea Atomic Energy Research Institute (KAERI) and Korea Institute of Nuclear Nonproliferation and Control (KINAC). IAEA agreed with the KINAC and KAERI to the direction of the project and to prepare both the Design Information Questionnaire (DIQ) and the Safeguards Technical Report (STR) for SMART facilities sequentially. The DIQ is a collection of questions to understand the characteristics of the reactor facilities that must be considered in applying safeguards. The STR is a document referenced by IAEA inspectors when verifying safeguards. Those draft versions were prepared and submitted to the IAEA. After review opinions were received, additional revision was conducted. In 2022, the IAEA holds the consultancy meeting on SBD for SMART. The purpose of the meeting is to review the draft DIQ and STR prepared by designers and discuss the future work plan of the task with designer and the task point of contact in order to safeguards can be considered at the early stage of the design. The results will be beneficial to the efficient safeguards verification activities of IAEA inspectors in the future.
        3.
        2022.05 구독 인증기관·개인회원 무료
        IAEA, in preparation for possible commercial operation of small modular reactors (SMR), is pursuing the early development of safeguards approaches for these reactors along with the publication of the safeguards technical report (STR) to make verification activities easier for inspectors. For this purpose, the IAEA, through the MSSP, is developing various approaches for the application of safeguards by design for SMRs in collaboration with five countries that along with the ROK includes Russia, China, and U.S. etc. In order to review the specific design information of the ROK’s only SMR facility, SMART, and to establish safeguards methods from the initial design stage, collaborations were made with the Korea Atomic Energy Research Institute, which researched and developed the SMART. As a result, the design information questionnaire (DIQ) and STR was created and sent to the IAEA. The DIQ is a collection of crucial questions regarding the application of safeguards to understand the characteristics of the reactor facility, and STR is a document referred to by IAEA inspectors during safeguards verification activities. The main contents of the STR consist of introduction, technological description of SMR, safeguards approach, conclusions and annexes. Through this study, it is anticipated to understand the technical requirements for safeguards implementation of SMRs in the design stage, and through the completion of the final report applying SBD with regards to the design of the SMART facility, it could be used as information material for future safeguard verification activities by IAEA inspectors.