검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2023.11 구독 인증기관·개인회원 무료
        The nuclide management process for reducing the environmental burden being developed by the Korea Atomic Energy Research Institute is performed in molten salts, resulting in contaminated salt wastes containing fission products such as Cs, Sr, Ba, and rare-earth nuclides. In addition, the spent fuel of a molten salt reactor (MSR) contains a variety of fission products, and a purification process may be required for the reuse of the salt and the separation and disposal of the fission products in the spent nuclear fuel. The melt-crystallization method is a technique used for the purification and separation of chemicals or metals based on the different melting points of the different substances. In a recent study, our group developed a reactive-crystallization method using Li2CO3 precipitation agent to precipitate metal corrosion from the reactor through a chlorination reaction by HCl and Cl2, which may occur in chloride molten salt, and successfully precipitated the metal precipitate and purified and recovered LiCl salt. In this study, reactive-crystallization method has been established for removing fission products and corrosive materials. Using the reactive crystallization method, white LiCl-KCl salt that was not discolored by metal corrosion was recovered through the crystallization plates, and fission products and metal elements were shown to be suppressed to several ppm in the purified salt. Consequently, high-purity salts were recovered with high nuclide and corrosive separation efficiencies. The reactive crystallization procedure can also be applied to other salt waste systems, such as MSR nuclear fuel treatment and molten salt chemistry for the elimination of corrosive substances.
        2.
        2022.10 구독 인증기관·개인회원 무료
        Molten chloride salts are promising candidates as a coolant for Molten Salt Reactors (MSRs) because of their low cost, high specific heat transfer, and thermal energy storage capacity. The NaCl- MgCl2 eutectic salts have enormous latent heat (430 kJ/kg) and financial advantage over other types of molten chloride salt. Despite the promise of the NaCl-MgCl2 eutectic salt, problems associated with structural material corrosion in the MSR system remain. The hygroscopicity of NaCl-MgCl2 and high MSRs operating temperature accelerate corrosion within structural alloys. Especially, MgCl2 reacts with H2O in the eutectic salt to produce HCl and Cl2, which are known to further exacerbate corrosion by the chlorination of structural materials. Therefore, several studies have worked to purify impurities associated with MgCl2, such as H2O. Thermal salt purification of NaCl-MgCl2 eutectic salt is one method that reduces HCl and Cl2 gas generation. However, MgO and MgOHCl are generated as the byproduct of thermal purification through a reaction between MgCl2 and H2O. The corrosion behavior of MgO within structural alloys after thermal treatment is not well known. This paper demonstrates corrosion behavior within structural alloy after thermal treatment at various temperature profiles of the NaCl-MgCl2 eutectic salt. According to the temperature range, MgCl2·H2O are separated at 100~200°C, and MgOHCl and HCl begin to occur at 240°C or higher. Finally, MgOHCl produces MgO and HCl at 500°C or higher temperatures. After thermal treatments, the H2O, MgOHCl, and MgO content were measured by Thermo Gravimetric Analyzer (TGA) to evaluate significant products causing corrosion. The structural materials were analyzed by the Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS) and using the mass change method to observe the type of localized corrosion, the corrosion rate, and the corrosion layer thickness. This study is possible in that it can reduce economic costs by reducing the essential use of expensive, high-purity molten salts because it is related to a substantial financial cost problem considering the amount of molten salt used in industrial sites.
        3.
        2022.05 구독 인증기관·개인회원 무료
        Molten salt used in the multipurpose molten salt experiment must be of high purity. Depending on the purpose of the experiment, only the base component of the molten salt be used, or a component simulating a nuclear fission product be added to the base component and used. In all cases, an increase in the concentration of impurities such as oxygen and moisture may lead to an erroneous interpretation when analyzing the experimental results. Therefore, molten salt should be purified before use. In this study, the purification of molten salt is described for multi-purpose molten salt experiments. The salt mixture is selected as MgCl2-NaCl and is quantified at a mixing ratio of 43mol%:57mol%. The salt mixture is treated in a glove box environment because of must minimize the reaction of adsorbing oxygen and moisture when the salt mixture is exposed to the atmosphere. MgCl2 is more likely to contain water than NaCl, the purification of the NaCl-MgCl2 mixture is established according to the purification process for removing water from MgCl2. A process for purifying the salt mixture briefly consists as follows: drying moisture, melting salts, purification, removing HCl, and stabilization. Through the process be able to obtain high-purity molten salt and more accurate experiment results.
        10.
        1997.04 KCI 등재 서비스 종료(열람 제한)
        수도의 내염성 품종 안나프르나에 NaCl 50 mM을 처리하여 유도된 단백질의 분리정제를 수행하여 한 개의 새로운 단백질을 분리 정제하였다. 그 결과는 다음과 같다 1. 10일된 유묘에 50mM NaCl을 48시간 처리하여 유도된 단백질의 존재를 전기영동을 통하여 확인하였다. 2. FPLC를 이용한 DEAE와 phenyl column을 이용하여 순수한 정제가 가능하였고, 이 과정을 통하여 전기영동상에서 단일 밴드를 나타내는 하나의 단백질을 정제하였다. 3. 이 단백질의 분자량이 64,000이라는 것을 Se-phdex-G 100 column chromatography를 통하여 확인하였다. 4. 이 단백질에 대한 단일 항체를 조제하여 고역가 항체를 분비하는 hybridoma 세포주 3개를 작성하고 isotype등 특성을 조사하였다.