In general, the design concepts of earth-observation satellites are established depending on the purposes of utilization such as commercial imagery business, public services, scientific research. Nowadays, The lightweight satellite structure is considered as an effective method for developing the earth-observation satellite. This paper introduces a design concept of the lightweight satellite structure for the constellation of earth-observation satellites. The modular design of the satellite structure is applied to save manpower and shorten the AIT process, in addition, a propulsion module is adopted to allow a hydrazine propulsion system to be installed on the satellite. The finite element method is used for the structural analysis of the satellite. The axial and lateral frequency requirements of satellite structure were verified by mode analysis. also, the margin of safety of satellite structure parts were satisfied with design requirements. As a result, the structural integrity of the suggested satellite structure is verified by mode analysis and static analysis.
In this paper, we present observations of the Space Radiation Detectors (SRDs) onboard the Next Generation Small Satellite-1 (NEXTSat-1) satellite. The SRDs, which are a part of the Instruments for the study of Stable/Storm-time Space (ISSS), consist of the Medium-Energy Particle Detector (MEPD) and the High-Energy Particle Detector (HEPD). The MEPD can detect electrons, ions, and neutrals with energies ranging from 20 to 400 keV, and the HEPD can detect electrons over an energy range from 0.35 to 2 MeV. In this paper, we report an event where particle flux enhancements due to substorm injections are clearly identified in the MEPD A observations at energies of tens of keV. Additionally, we report a specific example observation of the electron distributions over a wide energy range in which we identify electron spatial distributions with energies of tens to hundreds of keV from the MEPD and with energy ranging up to a few MeV from the HEPD in the slot region and outer radiation belts. In addition, for an ~1.5-year period, we confirm that the HEPD successfully observed the well-known outer radiation belt electron flux distributions and their variations in time and L shell in a way consistent with the geomagnetic disturbance levels. Last, we find that the inner edge of the outer radiation belt is mostly coincident with the plasmapause locations in L, somewhat more consistent at subrelativistic energies than at relativistic energies. Based on these example events, we conclude that the SRD observations are of reliable quality, so they are useful for understanding the dynamics of the inner magnetosphere, including substorms and radiation belt variations.
본 논문은 비선형성을 많이 내포하고 있어 수학적으로 모델링 하기 어려운 선박용 안정화 위성 안테나 시스템을 모델링하기 위해서, 신경 회로망의 오차 및 응답시간을 최소로 하는 최적 구조 신경 회로망 모델을 도출하고 이를 적용하고자 한다. 오차와 응답시간을 최소화하기 위해 유전알고리즘을 이용하여 신경 회로망 구조를 설계하였다. 안테나 시스템으로부터 얻어진 입출력 데이터에 거하여 본 논문에서 제안한 식별기를 이용하여 안테나 시스템을 식별하였으며, 실제 선박의 운동 성분에 대해서도 시스템을 잘 표현할 수 있는 최적 구조 신경 회로 기반 시스템 식별기를 얻을 수 있었다. 실제 실험을 통해서, 최적 신경회로망 구조가 안테나 시스템 식별에 효과적인 것을 알 수 있었다.